TY - JOUR
T1 - Collision-induced transitions between A 1Σ u+ and b 3Πu states of Na 2
T2 - The "gateway" effect of perturbed levels
AU - Li, Li
AU - Zhu, Qingshi
AU - Lyyra, A. M.
AU - Whang, T. J.
AU - Stwalley, W. C.
AU - Field, R. W.
AU - Alexander, M. H.
PY - 1992
Y1 - 1992
N2 - We present here the best qualitative and quantitative illustration to date of the perturbation "gateway" effect in collision-induced transitions between two mutually perturbing electronic states. The gateway effect, as described by Gelbart and Freed [Chem. Phys. Lett. 18, 470 (1973)], is a suggestion that all collision-induced transfer of population between two electronic states proceeds through a small number of isolated-molecule eigenstates which are of mixed electronic character, the "gateway levels," and that the rates for such gateway-mediated processes are related to the mixing fractions in the gateway levels. The gateway levels here are the Na2 A 1Σu+ ν'=26≃b 3Π2u ν'=28 J' = 16e,a-symmetry levels which are significantly mixed owing to an extremely small spin-orbit perturbation matrix element (the neighboring J' = 15 and 17e,s-symmetry levels are essentially free of mixing). A cw optical-optical double resonance (OODR) scheme is used to PUMP a single parent level and PROBE single daughter and granddaughter levels. The oscillator strengths for the PUMP and PROBE transitions are derived, respectively, from the A 1Σu+←X 1Σg+ (26,4) band and the 2 3Π2g←b 3Π2u (28,28) subband. The qualitative observation of the gateway effect is that whenever an a-symmetry A 1Σu+ ν'=26 parent level is selected, b 3Π2u ν=28 daughter and granddaughter levels are observably populated, but when an s-symmetry A 1Σ u+ ν'= 26 parent is selected, essentially no population is detected in b 3Π2u ν' = 28 daughter and granddaughter levels (i.e., no perturbation, no interelectronic state transfer). The quantitative observation of the gateway effect is that when a J' = 12 (or 14)e,a parent is selected, the most efficiently populated rotational levels of the other electronic state are granddaughter levels centered about the J' = 16e,a gateway daughter level rather than about the J' value of (or minimum energy gap relative to) the parent level.
AB - We present here the best qualitative and quantitative illustration to date of the perturbation "gateway" effect in collision-induced transitions between two mutually perturbing electronic states. The gateway effect, as described by Gelbart and Freed [Chem. Phys. Lett. 18, 470 (1973)], is a suggestion that all collision-induced transfer of population between two electronic states proceeds through a small number of isolated-molecule eigenstates which are of mixed electronic character, the "gateway levels," and that the rates for such gateway-mediated processes are related to the mixing fractions in the gateway levels. The gateway levels here are the Na2 A 1Σu+ ν'=26≃b 3Π2u ν'=28 J' = 16e,a-symmetry levels which are significantly mixed owing to an extremely small spin-orbit perturbation matrix element (the neighboring J' = 15 and 17e,s-symmetry levels are essentially free of mixing). A cw optical-optical double resonance (OODR) scheme is used to PUMP a single parent level and PROBE single daughter and granddaughter levels. The oscillator strengths for the PUMP and PROBE transitions are derived, respectively, from the A 1Σu+←X 1Σg+ (26,4) band and the 2 3Π2g←b 3Π2u (28,28) subband. The qualitative observation of the gateway effect is that whenever an a-symmetry A 1Σu+ ν'=26 parent level is selected, b 3Π2u ν=28 daughter and granddaughter levels are observably populated, but when an s-symmetry A 1Σ u+ ν'= 26 parent is selected, essentially no population is detected in b 3Π2u ν' = 28 daughter and granddaughter levels (i.e., no perturbation, no interelectronic state transfer). The quantitative observation of the gateway effect is that when a J' = 12 (or 14)e,a parent is selected, the most efficiently populated rotational levels of the other electronic state are granddaughter levels centered about the J' = 16e,a gateway daughter level rather than about the J' value of (or minimum energy gap relative to) the parent level.
UR - http://www.scopus.com/inward/record.url?scp=0001502898&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001502898&partnerID=8YFLogxK
U2 - 10.1063/1.463971
DO - 10.1063/1.463971
M3 - Article
AN - SCOPUS:0001502898
SN - 0021-9606
VL - 97
SP - 8835
EP - 8841
JO - The Journal of Chemical Physics
JF - The Journal of Chemical Physics
IS - 12
ER -