Combination of “generalized Trotter operator splitting” and “quadratic adaptive algorithm” method for tradeoff among speedup, stability, and accuracy in the Markov chain model of sodium ion channels in the ventricular cell model

Xing Ji Chen, Ching Hsing Luo, Min Hung Chen

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The fast hybrid operator splitting (HOS) and stable uniformization (UNI) methods have been proposed to save computation cost and enhance stability for Markov chain model in cardiac cell simulations. Moreover, Chen-Chen-Luo’s quadratic adaptive algorithm (CCL) combined with HOS or UNI was used to improve the tradeoff between speedup and stability, but without considering accuracy. To compromise among stability, acceleration, and accuracy, we propose a generalized Trotter operator splitting (GTOS) method combined with CCL independent of the asymptotic property of a particular ion-channel model. Due to the accuracy underestimation of the mixed root mean square error (MRMSE) method, threshold root mean square error (TRMSE) is proposed to evaluate computation accuracy. With the fixed time-step RK4 as a reference, the second-order GTOS combined with CCL (30.8-fold speedup) for the wild-type Markov chain model with nine states (WT-9 model) or (7.4-fold) for the wild-type Markov chain model with eight states (WT-8 model) is faster than UNI combined with CCL (15.6-fold) for WT-9 model or (1.2-fold) for WT-8 model, separately. Besides, the second-order GTOS combined with CCL has 3.81% TRMSE for WT-9 model or 4.32% TRMSE for WT-8 model more accurate than 72.43% TRMSE for WT-9 model or 136.17% TRMSE for WT-8 model of HOS combined with CCL. To compromise speedup and accuracy, low-order GTOS combined with CCL is suggested to have the advantages of high precision and low computation cost. For high-accuracy requirements, high-order GTOS combined with CCL is recommended. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)2131-2141
Number of pages11
JournalMedical and Biological Engineering and Computing
Volume58
Issue number9
DOIs
Publication statusPublished - 2020 Sept 1

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Combination of “generalized Trotter operator splitting” and “quadratic adaptive algorithm” method for tradeoff among speedup, stability, and accuracy in the Markov chain model of sodium ion channels in the ventricular cell model'. Together they form a unique fingerprint.

Cite this