TY - JOUR
T1 - Combination of multi-variable quadratic adaptive algorithm and hybrid operator splitting method for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model
AU - Luo, Ching Hsing
AU - Chen, Xing Ji
AU - Chen, Min Hung
N1 - Funding Information:
This work was supported by Sun Yat-sen University, China, under Scientific Initiation Project [No.67000-18821109] for High-level Experts and by the Ministry of Science and Technology, Taiwan, under grant 107-2115-M-006-013 separately.
Publisher Copyright:
© 2020 the Author(s).
PY - 2020
Y1 - 2020
N2 - Markovian model is widely used to study cardiac electrophysiology and drug screening. Due to the stiffness of Markov model for single-cell simulation, it is prone to induce instability by using large time-steps. Hybrid operator splitting (HOS) and uniformization (UNI) methods were devised to solve Markovian models with fixed time-step. Recently, it is shown that these two methods combined with Chen-Chen-Luo's quadratic adaptive algorithm (CCL) can save markedly computation cost with adaptive time-step. However, CCL determines the time-step size solely based on the membrane potential. The voltage changes slowly to increase the step size rapidly, while the values of state variables of Markov sodium channel model still change dramatically. As a result, the system is not stable and the errors of membrane potential and sodium current exceed 5%. To resolve this problem, we propose a multi-variable CCL method (MCCL) in which state occupancies of Markov model are included with membrane potential as the control quadratic parameters to determine the time-step adaptively. Using fixed time-step RK4 as a reference, MCCL combined with HOS solver has 17.2 times speedup performance with allowable errors 0.6% for Wild-Type Na+ channel with 9 states (WT-9) model, and it got 21.1 times speedup performance with allowable errors 3.2% for Wild-Type Na+ channel with 8 states (WT-8) model. It is concluded that MCCL can improve the simulation instability problem induced by a large time-step made with CCL especially for high stiff Markov model under allowable speed tradeoff.
AB - Markovian model is widely used to study cardiac electrophysiology and drug screening. Due to the stiffness of Markov model for single-cell simulation, it is prone to induce instability by using large time-steps. Hybrid operator splitting (HOS) and uniformization (UNI) methods were devised to solve Markovian models with fixed time-step. Recently, it is shown that these two methods combined with Chen-Chen-Luo's quadratic adaptive algorithm (CCL) can save markedly computation cost with adaptive time-step. However, CCL determines the time-step size solely based on the membrane potential. The voltage changes slowly to increase the step size rapidly, while the values of state variables of Markov sodium channel model still change dramatically. As a result, the system is not stable and the errors of membrane potential and sodium current exceed 5%. To resolve this problem, we propose a multi-variable CCL method (MCCL) in which state occupancies of Markov model are included with membrane potential as the control quadratic parameters to determine the time-step adaptively. Using fixed time-step RK4 as a reference, MCCL combined with HOS solver has 17.2 times speedup performance with allowable errors 0.6% for Wild-Type Na+ channel with 9 states (WT-9) model, and it got 21.1 times speedup performance with allowable errors 3.2% for Wild-Type Na+ channel with 8 states (WT-8) model. It is concluded that MCCL can improve the simulation instability problem induced by a large time-step made with CCL especially for high stiff Markov model under allowable speed tradeoff.
UR - http://www.scopus.com/inward/record.url?scp=85077030983&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077030983&partnerID=8YFLogxK
U2 - 10.3934/mbe.2020095
DO - 10.3934/mbe.2020095
M3 - Article
C2 - 32233609
AN - SCOPUS:85077030983
SN - 1547-1063
VL - 17
SP - 1808
EP - 1819
JO - Mathematical Biosciences and Engineering
JF - Mathematical Biosciences and Engineering
IS - 2
ER -