TY - JOUR
T1 - Combined two-stage xanthate processes for the treatment of copper-containing wastewater
AU - Chang, Y. K.
AU - Leu, M. H.
AU - Chang, J. E.
AU - Lin, T. F.
AU - Chiang, L. C.
AU - Shih, P. H.
AU - Chen, T. C.
PY - 2007/2
Y1 - 2007/2
N2 - Heavy metal removal is mainly conducted by adjusting the wastewater pH to form metal hydroxide precipitates. However, in recent years, the xanthate process with a high metal removal efficiency, attracted attention due to its use of sorption/desorption of heavy metals from aqueous solutions. In this study, two kinds of agricultural xanthates, insoluble peanut-shell xanthate (IPX) and insoluble starch xanthate (ISX), were used as sorbents to treat the copper-containing wastewater (Cu concentration from 50 to 1,000 mg/L). The experimental results showed that the maximum Cu removal efficiency by IPX was 93.5 % in the case of high Cu concentrations, whereby 81.1 % of copper could rapidly be removed within one minute. Moreover, copper-containing wastewater could also be treated by ISX over a wide range (50 to 1,000 mg/L) to a level that meets the Taiwan EPA's effluent regulations (3 mg/L) within 20 minutes. Whereas IPX had a maximum binding capacity for copper of 185 mg/g IPX, the capacity for ISX was 120 mg/g ISX. IPX is cheaper than ISX, and has the benefits of a rapid reaction and a high copper binding capacity, however, it exhibits a lower copper removal efficiency. A sequential IPX and ISX treatment (i.e., two-stage xanthate processes) could therefore be an excellent alternative. The results obtained using the two-stage xanthate process revealed an effective copper treatment. The effluent (Ce) was below 0.6 mg/L, compared to the influent (C0) of 1,001 mg/L at pH = 4 and a dilution rate of 0.6 h-1. Furthermore, the Cu-ISX complex formed could meet the Taiwan TCLP regulations, and be classified as non-hazardous waste. The xanthatilization of agricultural wastes offers a comprehensive strategy for solving both agricultural waste disposal and metal-containing wastewater treatment problems.
AB - Heavy metal removal is mainly conducted by adjusting the wastewater pH to form metal hydroxide precipitates. However, in recent years, the xanthate process with a high metal removal efficiency, attracted attention due to its use of sorption/desorption of heavy metals from aqueous solutions. In this study, two kinds of agricultural xanthates, insoluble peanut-shell xanthate (IPX) and insoluble starch xanthate (ISX), were used as sorbents to treat the copper-containing wastewater (Cu concentration from 50 to 1,000 mg/L). The experimental results showed that the maximum Cu removal efficiency by IPX was 93.5 % in the case of high Cu concentrations, whereby 81.1 % of copper could rapidly be removed within one minute. Moreover, copper-containing wastewater could also be treated by ISX over a wide range (50 to 1,000 mg/L) to a level that meets the Taiwan EPA's effluent regulations (3 mg/L) within 20 minutes. Whereas IPX had a maximum binding capacity for copper of 185 mg/g IPX, the capacity for ISX was 120 mg/g ISX. IPX is cheaper than ISX, and has the benefits of a rapid reaction and a high copper binding capacity, however, it exhibits a lower copper removal efficiency. A sequential IPX and ISX treatment (i.e., two-stage xanthate processes) could therefore be an excellent alternative. The results obtained using the two-stage xanthate process revealed an effective copper treatment. The effluent (Ce) was below 0.6 mg/L, compared to the influent (C0) of 1,001 mg/L at pH = 4 and a dilution rate of 0.6 h-1. Furthermore, the Cu-ISX complex formed could meet the Taiwan TCLP regulations, and be classified as non-hazardous waste. The xanthatilization of agricultural wastes offers a comprehensive strategy for solving both agricultural waste disposal and metal-containing wastewater treatment problems.
UR - http://www.scopus.com/inward/record.url?scp=33847153011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847153011&partnerID=8YFLogxK
U2 - 10.1002/elsc.200620166
DO - 10.1002/elsc.200620166
M3 - Article
AN - SCOPUS:33847153011
SN - 1618-0240
VL - 7
SP - 75
EP - 80
JO - Engineering in Life Sciences
JF - Engineering in Life Sciences
IS - 1
ER -