Command-shaping techniques for electrostatic MEMS actuation: Analysis and simulation

Kuo Shen Chen, Kuang Shun Ou

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

Precision positioning of microelectromechanical systems (MEMS) structures using electrostatic actuation has been widely used for optical and radio-frequency MEMS. How to achieve fast switching without exciting excessive residual vibration or structural impact is an important issue for these applications. This paper presents the analysis and simulation of applying command-shaping techniques for controlling MEMS electrostatic actuation. According to the nature of application fields, electrostatic actuators are classified into three categories: 1) lateral linear actuation; 2) vertical nonlinear actuation; and 3) pull-in actuation. Their corresponding linear or nonlinear command-shaping schemes are developed and presented. Both lumped element and continuous models of typical MEMS electrostatic actuated structures are simulated using Simulink and the finite-element method, and results indicate that the shaped command would yield a much superior response than that by the unshaped commands. Essential sensitivity studies are also conducted to examine the robustness of these shaping schemes, and results shows that within a certain level of parameter variation, these shapers are robust enough to retain the performance.

Original languageEnglish
Pages (from-to)537-549
Number of pages13
JournalJournal of Microelectromechanical Systems
Volume16
Issue number3
DOIs
Publication statusPublished - 2007 Jun

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Command-shaping techniques for electrostatic MEMS actuation: Analysis and simulation'. Together they form a unique fingerprint.

Cite this