Abstract
Comparative studies of double δ-doped InAlAs/InGaAs metal-oxide-semiconductor metamorphic high electron mobility transistors (MOS-MHEMTs) with different compressive-strained and tensile-strained channel structures have been made. In addition to the strain engineering of the heterostructure, the MOS-gate design is also integrated by using the cost-effective H2O2 oxidization technique. The tensile (compressive)-strained channel is devised by the In0.52Al0.48As/In0.41Ga0.59As (In0.52Al0.48As/In0.63Ga0.37As) heterostructure. Device characteristics with respect to different channel structures are physically studied. The impact-ionization-related kink effects in MHEMTs are significantly suppressed by the MOS-gate. Atomic force microscopy (AFM) and low-frequency noise (LFN) analysis were used to study the surface roughness and interface quality. As compared to the compressive-strained MOSMHEMT and conventional Schottky-gate devices, the present tensile-strained MOS-MHEMT design has demonstrated improved transconductance gain (gm), current drive, intrinsic voltage gain (AV), and power performance.
Original language | English |
---|---|
Pages (from-to) | Q227-Q231 |
Journal | ECS Journal of Solid State Science and Technology |
Volume | 3 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2014 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials