Comparing extended classifier system and genetic programming for financial forecasting: An empirical study

Mu Yen Chen, Kuang Ku Chen, Heien Kun Chiang, Hwa Shan Huang, Mu Jung Huang

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


As a broad subfield of artificial intelligence, machine learning is concerned with the development of algorithms and techniques that allow computers to learn. These methods such as fuzzy logic, neural networks, support vector machines, decision trees and Bayesian learning have been applied to learn meaningful rules; however, the only drawback of these methods is that it often gets trapped into a local optimal. In contrast with machine learning methods, a genetic algorithm (GA) is guaranteeing for acquiring better results based on its natural evolution and global searching. GA has given rise to two new fields of research where global optimization is of crucial importance: genetic based machine learning (GBML) and genetic programming (GP). This article adopts the GBML technique to provide a three-phase knowledge extraction methodology, which makes continues and instant learning while integrates multiple rule sets into a centralized knowledge base. Moreover, the proposed system and GP are both applied to the theoretical and empirical experiments. Results for both approaches are presented and compared. This paper makes two important contributions: (1) it uses three criteria (accuracy, coverage, and fitness) to apply the knowledge extraction process which is very effective in selecting an optimal set of rules from a large population; (2) the experiments prove that the rule sets derived by the proposed approach are more accurate than GP.

Original languageEnglish
Pages (from-to)1173-1183
Number of pages11
JournalSoft Computing
Issue number12
Publication statusPublished - 2007 Oct

All Science Journal Classification (ASJC) codes

  • Software
  • Theoretical Computer Science
  • Geometry and Topology


Dive into the research topics of 'Comparing extended classifier system and genetic programming for financial forecasting: An empirical study'. Together they form a unique fingerprint.

Cite this