TY - JOUR
T1 - Composite Building Materials Prepared from Bioresources
T2 - Use of Rice Husk for Autoclaved Lightweight Concrete Production
AU - Peng, Shao Lin
AU - Chen, Ying Liang
AU - Dai, Yu Sheng
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9
Y1 - 2024/9
N2 - Rice husk (RH) and straw are common agricultural wastes in Asian countries, and they are potential bioresources for building materials. RH contains a large amount of SiO2, and many studies have burnt RH to ash and then used it as a silica supplement in cement and concrete. However, the combustion of RH has an additional cost and exacerbates CO2 emissions and air pollution. RH inherently has a low bulk density and porous structure; therefore, it should be possible to directly use RH as a lightweight additive in concrete. The purposes of this study were to use RH in the production of autoclaved lightweight concrete (ALC) and to examine the effects of RH on ALC properties. Four RHs with different particle sizes, i.e., >1.2 mm, 0.6–1.2 mm, 0.3–0.6 mm, and <0.3 mm, were used as lightweight additives, and the ALC specimens were prepared with 0–20 wt.% RHs by autoclaving at 189 °C for 12 h. The >0.3 mm RH was applicable to prepare the ALC specimens, and the decomposition effect of <0.3 mm RH was significant. Both the bulk density and the compressive strength of the ALC specimens decreased with increasing RH size. RH with a particle size larger than 1.2 mm seems more appropriate for ALC production than RH with a smaller particle size because of the lower bulk density and higher compressive strength. The Ca/Si ratio decreased with increasing RH size, which affected the formation of tobermorite and thus reduced the compressive strength of the ALC specimens. With a suitable water-to-solid (W/S) ratio, the use of RHs as lightweight additives can yield ALC specimens that meet the requirements of commercial products.
AB - Rice husk (RH) and straw are common agricultural wastes in Asian countries, and they are potential bioresources for building materials. RH contains a large amount of SiO2, and many studies have burnt RH to ash and then used it as a silica supplement in cement and concrete. However, the combustion of RH has an additional cost and exacerbates CO2 emissions and air pollution. RH inherently has a low bulk density and porous structure; therefore, it should be possible to directly use RH as a lightweight additive in concrete. The purposes of this study were to use RH in the production of autoclaved lightweight concrete (ALC) and to examine the effects of RH on ALC properties. Four RHs with different particle sizes, i.e., >1.2 mm, 0.6–1.2 mm, 0.3–0.6 mm, and <0.3 mm, were used as lightweight additives, and the ALC specimens were prepared with 0–20 wt.% RHs by autoclaving at 189 °C for 12 h. The >0.3 mm RH was applicable to prepare the ALC specimens, and the decomposition effect of <0.3 mm RH was significant. Both the bulk density and the compressive strength of the ALC specimens decreased with increasing RH size. RH with a particle size larger than 1.2 mm seems more appropriate for ALC production than RH with a smaller particle size because of the lower bulk density and higher compressive strength. The Ca/Si ratio decreased with increasing RH size, which affected the formation of tobermorite and thus reduced the compressive strength of the ALC specimens. With a suitable water-to-solid (W/S) ratio, the use of RHs as lightweight additives can yield ALC specimens that meet the requirements of commercial products.
UR - http://www.scopus.com/inward/record.url?scp=85205053087&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85205053087&partnerID=8YFLogxK
U2 - 10.3390/jcs8090359
DO - 10.3390/jcs8090359
M3 - Article
AN - SCOPUS:85205053087
SN - 2504-477X
VL - 8
JO - Journal of Composites Science
JF - Journal of Composites Science
IS - 9
M1 - 359
ER -