Composite Building Materials Prepared from Bioresources: Use of Rice Husk for Autoclaved Lightweight Concrete Production

Shao Lin Peng, Ying Liang Chen, Yu Sheng Dai

Research output: Contribution to journalArticlepeer-review

Abstract

Rice husk (RH) and straw are common agricultural wastes in Asian countries, and they are potential bioresources for building materials. RH contains a large amount of SiO2, and many studies have burnt RH to ash and then used it as a silica supplement in cement and concrete. However, the combustion of RH has an additional cost and exacerbates CO2 emissions and air pollution. RH inherently has a low bulk density and porous structure; therefore, it should be possible to directly use RH as a lightweight additive in concrete. The purposes of this study were to use RH in the production of autoclaved lightweight concrete (ALC) and to examine the effects of RH on ALC properties. Four RHs with different particle sizes, i.e., >1.2 mm, 0.6–1.2 mm, 0.3–0.6 mm, and <0.3 mm, were used as lightweight additives, and the ALC specimens were prepared with 0–20 wt.% RHs by autoclaving at 189 °C for 12 h. The >0.3 mm RH was applicable to prepare the ALC specimens, and the decomposition effect of <0.3 mm RH was significant. Both the bulk density and the compressive strength of the ALC specimens decreased with increasing RH size. RH with a particle size larger than 1.2 mm seems more appropriate for ALC production than RH with a smaller particle size because of the lower bulk density and higher compressive strength. The Ca/Si ratio decreased with increasing RH size, which affected the formation of tobermorite and thus reduced the compressive strength of the ALC specimens. With a suitable water-to-solid (W/S) ratio, the use of RHs as lightweight additives can yield ALC specimens that meet the requirements of commercial products.

Original languageEnglish
Article number359
JournalJournal of Composites Science
Volume8
Issue number9
DOIs
Publication statusPublished - 2024 Sept

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Engineering (miscellaneous)

Cite this