Abstract
Chars originating from the burning or pyrolysis of vegetation may significantly sorb neutral organic contaminants (NOCs). To evaluate the relationship between the char composition and NOC sorption, a series of char samples were generated by pyrolyzing a wheat residue (Triticum aestivum L) for 6 h at temperatures between 300 °C and 700 °C and analyzed for their elemental compositions, surface areas, and surface functional groups. The samples were then studied for their abilities to sorb benzene and nitrobenzene from water. A commercial activated carbon was used as a reference carbonaceous sample. The char samples produced at high pyrolytic temperatures (500-700 °C) were well carbonized and exhibited a relatively high surface area (>300 m2/g), little organic matter (<3%), and low oxygen content (≤10%). By contrast, the chars formed at low temperatures (300-400 °C) were only partially carbonized, showing significantly different properties (<200 m2/g surface area, 40-50% organic carbon, and >20% oxygen). The char samples exhibited a significant range of surface acidity/basicity because of their different surface polar-group contents, as characterized by the Boehm titration data and the NMR and FTIR spectra. The NOC sorption by high-temperature chars occurred almost exclusively by surface adsorption on carbonized surfaces, whereas the sorption by low-temperature chars resulted from the surface adsorption and the concurrent smaller partition into the residual organic-matter phase. The chars appeared to have a higher surface affinity for a polar solute (nitrobenzene) than for a nonpolar solute (benzene), the difference being related to the surface acidity/basicity of the char samples.
Original language | English |
---|---|
Pages (from-to) | 4649-4655 |
Number of pages | 7 |
Journal | Environmental Science and Technology |
Volume | 38 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2004 Sept 1 |
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry