Computational version of the correlation light-field camera

Thomas Gregory, Matthew P. Edgar, Graham M. Gibson, Paul Antoine Moreau

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Light-field cameras allow the acquisition of both the spatial and angular components of the light-field. The conventional way to perform such acquisitions leads to a strong spatio-angular resolution limitation but correlation-enabled plenoptic cameras have been introduced recently that relax this constraint. Here we use a computational version of this concept to acquire realistic light-fields images using a commercial DSLR Camera lens as an imaging system. By placing the image sensor in the focal plane of a lens, within the camera we ensure the acquisition of pure angular components together with the spatial information. We perform an acquisition presenting a high spatio-angular rays resolution obtained through a trade off of the temporal resolution. The acquisition reported is photo-realistic and the acquisition of diffraction limited features is observed with the setup. Finally, we demonstrate the refocusing abilities of the camera.

Original languageEnglish
Article number21409
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - 2022 Dec

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Computational version of the correlation light-field camera'. Together they form a unique fingerprint.

Cite this