TY - JOUR
T1 - Control of lipid droplet size in budding yeast requires the collaboration between Fld1 and Ldb16
AU - Wang, Chao Wen
AU - Miao, Yu Hsuan
AU - Chang, Yi Shun
PY - 2014/3
Y1 - 2014/3
N2 - The human congenital generalized lipodystrophy type 2 protein seipin (Fld1 in budding yeast) controls lipid droplet (LD) size through an unknown mechanism. Here, we report that deletion of yeast LDB16/YCL005W, similar to deletion of FLD1, causes supersized and small clustered LDs, altered phospholipid metabolism and impaired distribution of a subset of LD proteins. Ldb16 is a transmembrane protein in the endoplasmic reticulum (ER) that assembles together with Fld1 at ER-LD contact sites, a region that probably links neutral lipid synthesis with LD assembly. The formation of the Fld1-Ldb16 complex involves putative transmembrane segments of both proteins, thus, directly contributing to the maintenance of LD morphology. The stability of Ldb16 requires Fld1, as Ldb16 is subjected to ER-associated degradation (ERAD) in the absence of Fld1 but is stabilized when Fld1 is present. Strikingly, human seipin, but not yeast Fld1, complements the defects in LDs in ldb16Δ yeast, implying that seipin can substitute for the function of the Fld1-Ldb16 complex. We propose that human seipin might adopt the architecture of the yeast Fld1-Ldb16 complex in order to properly maintain the size of LDs.
AB - The human congenital generalized lipodystrophy type 2 protein seipin (Fld1 in budding yeast) controls lipid droplet (LD) size through an unknown mechanism. Here, we report that deletion of yeast LDB16/YCL005W, similar to deletion of FLD1, causes supersized and small clustered LDs, altered phospholipid metabolism and impaired distribution of a subset of LD proteins. Ldb16 is a transmembrane protein in the endoplasmic reticulum (ER) that assembles together with Fld1 at ER-LD contact sites, a region that probably links neutral lipid synthesis with LD assembly. The formation of the Fld1-Ldb16 complex involves putative transmembrane segments of both proteins, thus, directly contributing to the maintenance of LD morphology. The stability of Ldb16 requires Fld1, as Ldb16 is subjected to ER-associated degradation (ERAD) in the absence of Fld1 but is stabilized when Fld1 is present. Strikingly, human seipin, but not yeast Fld1, complements the defects in LDs in ldb16Δ yeast, implying that seipin can substitute for the function of the Fld1-Ldb16 complex. We propose that human seipin might adopt the architecture of the yeast Fld1-Ldb16 complex in order to properly maintain the size of LDs.
UR - http://www.scopus.com/inward/record.url?scp=84903362768&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903362768&partnerID=8YFLogxK
U2 - 10.1242/jcs.137737
DO - 10.1242/jcs.137737
M3 - Article
C2 - 24434579
AN - SCOPUS:84903362768
SN - 0021-9533
VL - 127
SP - 1214
EP - 1228
JO - Journal of Cell Science
JF - Journal of Cell Science
IS - 6
ER -