Control strategy of a hybrid renewable energy system based on reinforcement learning approach for an isolated Microgrid

Bao Chau Phan, Ying Chih Lai

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Due to the rising cost of fossil fuels and environmental pollution, renewable energy (RE) resources are currently being used as alternatives. To reduce the high dependence of RE resources on the change of weather conditions, a hybrid renewable energy system (HRES) is introduced in this research, especially for an isolated microgrid. In HRES, solar and wind energies are the primary energy resources while the battery and fuel cells (FCs) are considered as the storage systems that supply energy in case of insufficiency. Moreover, a diesel generator is adopted as a back-up system to fulfill the load demand in the event of a power shortage. This study focuses on the development of HRES with the combination of battery and hydrogen FCs. Three major parts were considered including optimal sizing, maximum power point tracking (MPPT) control, and the energy management system (EMS). Recent developments and achievements in the fields of machine learning (ML) and reinforcement learning (RL) have led to new challenges and opportunities for HRES development. Firstly, the optimal sizing of the hybrid renewable hydrogen energy system was defined based on the Hybrid Optimization Model for Multiple Energy Resources (HOMER) software for the case study in an island in the Philippines. According to the assessment of EMS and MPPT control of HRES, it can be concluded that RL is one of the most emerging optimal control solutions. Finally, a hybrid perturbation and observation (P & O) and Q-learning (h-POQL) MPPT was proposed for a photovoltaic (PV) system. It was conducted and validated through the simulation in MATLAB/Simulink. The results show that it showed better performance in comparison to the P & O method.

Original languageEnglish
Article number4001
JournalApplied Sciences (Switzerland)
Volume9
Issue number19
DOIs
Publication statusPublished - 2019 Oct 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Instrumentation
  • Engineering(all)
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Control strategy of a hybrid renewable energy system based on reinforcement learning approach for an isolated Microgrid'. Together they form a unique fingerprint.

Cite this