Abstract
In this study, we utilized a dielectric Bragg reflector (DBR) as a mirror and positioned a wide-spectrum FAMACsPb(BrI)3 halide perovskite film between two DBRs to construct a vertical-cavity surface-emitting laser (VCSEL) structure. The top and bottom DBRs were connected using optical adhesive, allowing us to control the cavity length by applying external force. Through this approach, we achieved operation at the desired wavelength. Due to the exceptional optical gain provided by FAMACsPb(BrI)3, we successfully observed multimode and lasing phenomena at room temperature under continuous-wave (CW) laser excitation. The outcomes of this study provide valuable insights for the application of novel VCSEL structures and highlight the potential of using FAMACsPb(BrI)3 halide perovskites in optical gain. This work holds significant implications for the fields of optical communication and laser technology.
Original language | English |
---|---|
Article number | 1517 |
Journal | Crystals |
Volume | 13 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2023 Oct |
All Science Journal Classification (ASJC) codes
- General Chemical Engineering
- General Materials Science
- Condensed Matter Physics
- Inorganic Chemistry