Convolutional Autoencoder and Transfer Learning for Automatic Virtual Metrology

Yu Ming Hsieh, Tan Ju Wang, Chin Yi Lin, Yueh Feng Tsai, Fan Tien Cheng

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


To ensure stable processing and high-yield production, high-Tech factories (e.g., semiconductor, TFT-LCD) demand product quality total inspection. Generally speaking, sampling inspection only measures a few samples and comes with metrology delay, thus it usually cannot achieve the goal of real-Time and online total inspection. Automatic Virtual Metrology (AVM) was developed to tackle such problem. It can collect the data from the process tools to conjecture the virtual metrology (VM) values in the prediction model for realizing the goal of online and real-Time total inspection. With the advancement of technology, the processes become more and more precise, and better accuracy of VM value prediction is demanded. The CNN-based AVM (denoted as AVMCNN) scheme can not only enhance the accuracy of the original AVM prediction, but also perform better on the extreme values. Nevertheless, two advanced capabilities need to be addressed for its practical applications: 1) effective initial-model-creation approach with insufficient metrology data; and 2) intelligent self-learning capability for on-line model refreshing. To possess these two advanced capabilities, the Advanced AVMCNN System based on convolutional autoencoder (CAE) and transfer learning (TL) is proposed in this work. It is verified that the Advanced AVMCNN System is more feasible for the onsite applications of the actual production lines.

Original languageEnglish
Pages (from-to)8423-8430
Number of pages8
JournalIEEE Robotics and Automation Letters
Issue number3
Publication statusPublished - 2022 Jul 1

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Biomedical Engineering
  • Human-Computer Interaction
  • Mechanical Engineering
  • Computer Vision and Pattern Recognition
  • Computer Science Applications
  • Control and Optimization
  • Artificial Intelligence


Dive into the research topics of 'Convolutional Autoencoder and Transfer Learning for Automatic Virtual Metrology'. Together they form a unique fingerprint.

Cite this