Cost-effectiveness of implementing computed tomography screening for lung cancer in Taiwan

Research output: Contribution to journalArticle

20 Citations (Scopus)


Background A screening program for lung cancer requires more empirical evidence. Based on the experience of the National Lung Screening Trial (NLST), we developed a method to adjust lead-time bias and quality-of-life changes for estimating the cost-effectiveness of implementing computed tomography (CT) screening in Taiwan. Methods The target population was high-risk (≥30 pack-years) smokers between 55 and 75 years of age. From a nation-wide, 13-year follow-up cohort, we estimated quality-adjusted life expectancy (QALE), loss-of-QALE, and lifetime healthcare expenditures per case of lung cancer stratified by pathology and stage. Cumulative stage distributions for CT-screening and no-screening were assumed equal to those for CT-screening and radiography-screening in the NLST to estimate the savings of loss-of-QALE and additional costs of lifetime healthcare expenditures after CT screening. Costs attributable to screen-negative subjects, false-positive cases and radiation-induced lung cancer were included to obtain the incremental cost-effectiveness ratio from the public payer's perspective. Results The incremental costs were US$22,755 per person. After dividing this by savings of loss-of-QALE (1.16 quality-adjusted life year (QALY)), the incremental cost-effectiveness ratio was US$19,683 per QALY. This ratio would fall to US$10,947 per QALY if the stage distribution for CT-screening was the same as that of screen-detected cancers in the NELSON trial. Conclusions Low-dose CT screening for lung cancer among high-risk smokers would be cost-effective in Taiwan. As only about 5% of our women are smokers, future research is necessary to identify the high-risk groups among non-smokers and increase the coverage.

Original languageEnglish
Pages (from-to)183-191
Number of pages9
JournalLung Cancer
Publication statusPublished - 2017 Jun 1

All Science Journal Classification (ASJC) codes

  • Oncology
  • Pulmonary and Respiratory Medicine
  • Cancer Research

Fingerprint Dive into the research topics of 'Cost-effectiveness of implementing computed tomography screening for lung cancer in Taiwan'. Together they form a unique fingerprint.

Cite this