Crystalline SiCN: A hard material rivals to cubic BN

L. C. Chen, K. H. Chen, S. L. Wei, P. D. Kichambare, J. J. Wu, T. R. Lu, C. T. Kuo

Research output: Contribution to journalConference articlepeer-review

87 Citations (Scopus)

Abstract

Growth and mechanical properties of SiCN materials prepared by microwave plasma enhanced chemical vapor deposition (CVD) as well as electron cyclotron resonance plasma CVD are reported. Large (several tens of microns), well-faceted ternary SiCN crystals were grown by microwave plasma-enhanced chemical vapor deposition, whereas amorphous SiCN films were deposited by ECR-CVD. The ternary crystalline compound (C; Si)xNy exhibits a hexagonal structure and consists of a network wherein the Si and C are substitutional elements. While the N content of the crystalline compound is about 50 at.%, the extent of Si substitution varies and can be as low as 10 at.%. The amorphous SiCN films contain only about 30 at.% N. Nano-indentation studies were employed to investigate the mechanical properties of the SiCN materials. From the load versus displacement curves, we estimated the hardness and the effective modulus of the SiCN crystals to be around 30 and 321.7 GPa, respectively. The corresponding values for the amorphous SiCN were around 22 and 164.4 GPa, respectively. These values are well above most reported values for CN films.

Original languageEnglish
Pages (from-to)112-116
Number of pages5
JournalThin Solid Films
Volume355
DOIs
Publication statusPublished - 1999 Nov 1
EventProceedings of the 1999 26th International Conference on Metallurgic Coatings and Thin Films - San Diego, CA, USA
Duration: 1999 Apr 121999 Apr 15

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Crystalline SiCN: A hard material rivals to cubic BN'. Together they form a unique fingerprint.

Cite this