TY - JOUR
T1 - Cu-doped p-type ZnO nanostructures as unique acetone sensor at room temperature (~25 °C)
AU - Brahma, Sanjaya
AU - Yeh, Yu Wen
AU - Huang, Jow Lay
AU - Liu, Chuan Pu
N1 - Funding Information:
This work was financially supported by the Hierarchical Green-Energy Materials (Hi-GEM) Research Center, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and the Ministry of Science and Technology (MOST 110-2634-F-006 -017) in Taiwan.
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/10/30
Y1 - 2021/10/30
N2 - We demonstrate prominent specificity on acetone gas sensing at room temperature (~25 °C) enabled solely by rendering ZnO nanostructures p-type via Cu doping of 0.8–3.7 at%, synthesized by chemical vapor deposition at 575 °C. Structural and chemical bonding analysis confirmed the successful substitution of Cu+1 for Zn+2 lattice sites leading to the conversion of n-type ZnO to p-type. Besides, Cu doping caused significant change in the morphology of the resulting ZnO nanostructures from highly aligned ZnO nanowires to randomly-aligned nanobelts, nanoribbons, and needle-like nanowires with length of 15–20 μm. The electrical measurement based on field-effect transistors comprising of individual nanowires revealed the transition of n- to p-type at a doping concentration of 1.1 at. %. The same devices were then exposed to acetone to monitor the gas sensing properties through chemiresistive responses as gas sensors. Both the un-doped and the Cu-doped n-type ZnO nanowires did not respond toward acetone exposure at room temperature. Exclusively, only the p-type Cu-doped ZnO nanostructures (>1.1 at% Cu) exhibited striking responses toward the exposure of acetone at even 1 ppm with supreme specificity over various gas species (acetone, ammonia, oxygen and alcohols) at room temperature. These results promise the unique implementation of the devices into wearable gadgets for early diagnosis of diabetes.
AB - We demonstrate prominent specificity on acetone gas sensing at room temperature (~25 °C) enabled solely by rendering ZnO nanostructures p-type via Cu doping of 0.8–3.7 at%, synthesized by chemical vapor deposition at 575 °C. Structural and chemical bonding analysis confirmed the successful substitution of Cu+1 for Zn+2 lattice sites leading to the conversion of n-type ZnO to p-type. Besides, Cu doping caused significant change in the morphology of the resulting ZnO nanostructures from highly aligned ZnO nanowires to randomly-aligned nanobelts, nanoribbons, and needle-like nanowires with length of 15–20 μm. The electrical measurement based on field-effect transistors comprising of individual nanowires revealed the transition of n- to p-type at a doping concentration of 1.1 at. %. The same devices were then exposed to acetone to monitor the gas sensing properties through chemiresistive responses as gas sensors. Both the un-doped and the Cu-doped n-type ZnO nanowires did not respond toward acetone exposure at room temperature. Exclusively, only the p-type Cu-doped ZnO nanostructures (>1.1 at% Cu) exhibited striking responses toward the exposure of acetone at even 1 ppm with supreme specificity over various gas species (acetone, ammonia, oxygen and alcohols) at room temperature. These results promise the unique implementation of the devices into wearable gadgets for early diagnosis of diabetes.
UR - http://www.scopus.com/inward/record.url?scp=85108602751&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108602751&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2021.150351
DO - 10.1016/j.apsusc.2021.150351
M3 - Article
AN - SCOPUS:85108602751
SN - 0169-4332
VL - 564
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 150351
ER -