Abstract
Nanosize copper embedded in the inert carbon shell (Cu@C) prepared by carbonization of Cu2+-β-CD at 573K was dispersed in TiO2. The Cu@C (0.1% and 0.3%) dispersed TiO2 was used in assembling of photoanodes for dye-sensitized solar cells (DSSCs). By small angle X-ray scattering (SAXS) spectroscopy, it is found that the Cu@C dispersed TiO2 having an average Cu diameter of 18.3nm and carbon shell thickness of 3-5nm. Larger Cu nanoparticles having an average diameter of 24.5nm in TiO2 was formed when their carbon shells were steam reformed at 673K. The Cu nanoparticles having a spherical shape are well dispersed in TiO2, which significantly enhance the photo-excited electron transfer for the DSSC. Notably, the Cu dispersed TiO2 photoanode has a greater efficiency than the pure TiO2 one by at least 23%. This work exemplifies a simple and novel alternative to enhance DSSC efficiencies.
Original language | English |
---|---|
Pages (from-to) | 144-147 |
Number of pages | 4 |
Journal | Applied Energy |
Volume | 100 |
DOIs | |
Publication status | Published - 2012 Dec |
All Science Journal Classification (ASJC) codes
- Building and Construction
- General Energy
- Mechanical Engineering
- Management, Monitoring, Policy and Law