Damages and microstructural variation of high-lead and eutectic SnPb composite flip chip solder bumps induced by electromigration

Yeh Hsiu Liu, Kwang Lung Lin

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)


The electromigration behavior of the high-lead and eutectic SnPb composite solder bumps was investigated at 150 °C with 5 × 103 A/cm2 current stressing for up to 1711 h. The diameter of the bumps was about 125 μm. The underbump metallization (UBM) on the chip side was sputtered Al/Ni(V)/Cu thin films, and the Cu pad on the board side was plated with electroless Ni/Au. It was observed that damages occurred in the joints in a downward electron flow (from chip side to the substrate side), while those joints having the opposite current polarity showed only minor changes. In the case of downward electron flow, electromigration damages were observed in the UBM and solder bumps. The vanadium in Ni(V) layer was broken under current stressing of 1711 h while it was still intact after current stressing of 1000 h. The electron probe microanalyzer (EPMA) elemental mapping clearly shows that the Al atoms in the trace migrated through the UBM into the solder bump during current stressing. Voids were found in the solder bump near the UBM/solder interface. The Sn-rich phases of the solder bumps showed gradual streaking and reorientation upon current stressing. This resulted in the formation of uniaxial Sn-rich phases in the middle of the solder bump, while the columnar and fibrous Sn-rich phases were formed in the surrounding regions. The formation mechanism of electromigration-induced damage to the UBM structure and solder bump were discussed.

Original languageEnglish
Pages (from-to)2184-2193
Number of pages10
JournalJournal of Materials Research
Issue number8
Publication statusPublished - 2005 Aug

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Damages and microstructural variation of high-lead and eutectic SnPb composite flip chip solder bumps induced by electromigration'. Together they form a unique fingerprint.

Cite this