Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies

Yung Chung Lo, Wen Ming Chen, Chun Hsiung Hung, Shing Der Chen, Jo Shu Chang

Research output: Contribution to journalArticlepeer-review

196 Citations (Scopus)


Cellulosic materials are the major components in biomass feedstock used for bioenergy production. Hydrolytic products of cellulosic substances consist primarily of hexose (e.g., glucose) and pentose (e.g., xylose). In this study, the efficiency of fermentative conversion of sucrose (representing hexose) and xylose into H2 was examined with seven H2-producing pure strains isolated from a high-rate H2-producing system in our recent work. The isolates were identified as Clostridium butyricum (strains CGS2 and CGS5), Clostridium pasteurianum (strains CH1, CH4, CH5, and CH7), and Klebsiella sp. Batch H2 fermentation shows that only Cl. butyricum and Klebsiella sp. strains could utilize xylose for H2 production, while all of them can grow and produce H2 on sucrose. Among all strains examined, Cl. butyricum CGS5 was the best H2 producer on xylose with the highest H2 production rate and yield of 212.5 ml/h/l and 0.73 mol H2/mol xylose, respectively, taking place at 20 g COD/l of xylose. In contrast, Cl. pasteurianum CH4 was most efficient in converting sucrose to H2; the highest H2 production rate (569 ml/h/l) and yield (2.07 mol H2/mol hexose) were obtained at a sucrose concentration of 40 g COD/l. The substrate preference of the H2-producing isolates was consistent with the bacterial community structure that existed in the bioreactor, showing that Cl. butyricum and Cl. pasteurianum were predominant in the cultures grown on xylose and sucrose, respectively. Irrespective of the carbon substrate used, butyrate and acetate were the predominant soluble metabolites. Shake-flask cultures displayed higher H2 productivity over static ones, indicating the importance of efficient mass transfer for H2 production. The dependence of cell growth and H2 production on carbon substrate concentration could be described by the proposed kinetic models with good agreements.

Original languageEnglish
Pages (from-to)827-842
Number of pages16
JournalWater Research
Issue number4-5
Publication statusPublished - 2008 Feb

All Science Journal Classification (ASJC) codes

  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution


Dive into the research topics of 'Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies'. Together they form a unique fingerprint.

Cite this