Deep-Learning-Based Network for Lane Following in Autonomous Vehicles

Abida Khanum, Chao Yang Lee, Chu Sing Yang

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The research field of autonomous self-driving vehicles has recently become increasingly popular. In addition, motion-planning technology is essential for autonomous vehicles because it mitigates the prevailing on-road obstacles. Herein, a deep-learning-network-based architecture that was integrated with VGG16 and the gated recurrent unit (GRU) was applied for lane-following on roads. The normalized input image was fed to the three-layer VGG16 output layer as a pattern and the GRU output layer as the last layer. Next, the processed data were fed to the two fully connected layers, with a dropout layer added in between each layer. Afterward, to evaluate the deep-learning-network-based model, the steering angle and speed from the control task were predicted as output parameters. Experiments were conducted using the a dataset from the Udacity simulator and a real dataset. The results show that the proposed framework remarkably predicted steering angles in different directions. Furthermore, the proposed approach achieved higher mean square errors of 0.0230 and 0.0936 and and inference times of 3–4 and 3 ms. We also implemented our proposed framework on the NVIDIA Jetson embedded platform (Jetson Nano 4 GB) and compared it with the GPU’s computational time. The results revealed that the embedded system took 45–46 s to execute a single epoch in order to predict the steering angle. The results show that the proposed framework generates fruitful and accurate motion planning for lane-following in autonomous driving.

Original languageEnglish
Article number3084
JournalElectronics (Switzerland)
Volume11
Issue number19
DOIs
Publication statusPublished - 2022 Oct

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Signal Processing
  • Hardware and Architecture
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Deep-Learning-Based Network for Lane Following in Autonomous Vehicles'. Together they form a unique fingerprint.

Cite this