Deep reactive ion etching of silicon

A. A. Ayön, Kuo-Shen Chen, K. A. Lohner, S. M. Spearing, H. Sawin, M. A. Schmidt

Research output: Contribution to journalConference articlepeer-review

17 Citations (Scopus)

Abstract

The ability to etch deep trenches in silicon while controlling not only the profile of etched features but also the etching rate, uniformity and selectivity enable us to expand the number and scope of MEMS devices. In fact, the increase of MEMS applications in different and varied fields requiring deep silicon etching or high aspect ratio structures (HARS) has even been extended to include microturbomachinery which was recently introduced as a feasible source of power generation. Many projects also place additional demands on surface morphology. Thus, the scalloping observed on vertical walls during time multiplexed deep etching (TMDE), the roughness of horizontal surfaces exposed to the glow discharge and the radius at the bottom of etched features are also relevant. Therefore, it is important to understand not only the plasma processes involved but also the dependence of response variables on operating conditions. For this purpose we have designed, performed and analyzed sets of experiments adequate to fit quadratic models. The data was collected using interferometry, atomic force microscopy (AFM), profilometry and scanning electron microscopy (SEM). The exercise involved eight etching variables and it was conducted in an inductively coupled deep reactive ion etcher (DRIE). The mapping of the dependence of response variables on dry processing conditions produced by this systematic approach provide additional insight in the plasma phenomena involved and supply practical tools to locate and optimize robust operating conditions.

Original languageEnglish
Pages (from-to)51-61
Number of pages11
JournalMaterials Research Society Symposium - Proceedings
Volume546
Publication statusPublished - 1999 Dec 1
EventProceedings of the 1998 MRS Fall Meeting - Symposium AA,Materials Science of Microelectromechanical Systems (MEMS) - Boston, MA, USA
Duration: 1998 Dec 11998 Dec 2

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Deep reactive ion etching of silicon'. Together they form a unique fingerprint.

Cite this