Deletion of Nuclear Localizing Signal Attenuates Proinflammatory Activity of Prothymosin-Alpha and Enhances Its Neuroprotective Effect on Transient Ischemic Stroke

Liang Chao Wang, Chao Liang Wu, Ya Yun Cheng, Kuen Jer Tsai

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Post-ischemic inflammation plays an important role in the progression of ischemia/reperfusion injuries. Prothymosin-α (ProT) can protect cells from necrotic death following ischemia; however, its immunostimulatory actions may counteract the neuroprotective effect. We proposed that ProTΔNLS, synthesized by deleting its nuclear localizing signal (NLS) at the C-terminal of ProT, can attenuate the immunostimulatory activity and has more salient neuroprotective effect. In this study, we examined the therapeutic effects of ProT and ProTΔNLS in a transient middle cerebral artery occlusion (tMCAO) model of rats. Rats that had sustained 90 min of tMCAO were treated with GST-vehicle, ProT, or ProTΔNLS. Therapeutic outcomes were evaluated by infarction volume assay and behavioral assessment. Changes to inflammatory mediators, including tumor necrosis factor α (TNF-α), interleukin-10 (IL-10), and myeloperoxidase (MPO) were evaluated by enzyme-linked immunosorbent assay. Activated matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) levels were evaluated by gelatin zymography. Microglial activation was identified by double-immunostaining for Iba-1 and CD68. Our results showed that while both ProT and ProTΔNLS reduce infarction volume and improve functional outcome, ProTΔNLS provides the best therapeutic outcome. ProT increases TNF-α but decreases IL-10 secretion after ischemic injury, reflecting its pro-inflammatory activity. ProTΔNLS suppresses expression of TNF-α, MPO, and activity of MMPs in ischemic brain tissue. It also suppresses activation of microglia in penumbral cortex. These data demonstrate the immunesuppressive activities of ProTΔNLS. In conclusion, ProT has pro-inflammatory effect that may counteract its neuroprotective effect. Deletion of NLS from ProT may attenuate post-ischemic inflammation and enhance the neuroprotective effects of ProT.

Original languageEnglish
Pages (from-to)582-593
Number of pages12
JournalMolecular Neurobiology
Volume54
Issue number1
DOIs
Publication statusPublished - 2017 Jan 1

All Science Journal Classification (ASJC) codes

  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Deletion of Nuclear Localizing Signal Attenuates Proinflammatory Activity of Prothymosin-Alpha and Enhances Its Neuroprotective Effect on Transient Ischemic Stroke'. Together they form a unique fingerprint.

Cite this