Dengue Virus Infection Causes the Activation of Distinct NF- κ B Pathways for Inducible Nitric Oxide Synthase and TNF- Expression in RAW264.7 Cells

Yi Lin Cheng, Yee Shin Lin, Chia Ling Chen, Shu Wen Wan, Yi Dan Ou, Chia Yi Yu, Tsung Ting Tsai, Po Chun Tseng, Chiou Feng Lin

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Infection with dengue virus (DENV) causes an increase in proinflammatory responses, such as nitric oxide (NO) generation and TNF-expression; however, the molecular mechanism underlying this inflammatory activation remains undefined, although the activation of the transcription factor NF-B is generally involved. In addition to TNF- production in DENV-infected murine macrophage RAW264.7 cells, inducible NO synthase was transcriptionally and posttranslationally elevated and accompanied by NO generation. NF-B is known to be activated by DENV infection. Pharmacologically inhibiting NF-B activation abolishes iNOS/NO biosynthesis and TNF- production. With inhibition, the potential role of NF-B in oxidative signaling regulation was prevented during DENV infection. Heat-inactivated DENV failed to cause the identified inflammatory responses. Pharmacological inhibition of TLR3 partly decreased NF-B activation; however, it effectively abolished inducible iNOS/NO biosynthesis but did not inhibit TNF- production. In contrast to TLR3, viral protein NS2B3 also independently contributed to NF-B activation to regulate TNF- production. These results show the distinct pathways for NF-B activation caused by DENV infection individually for the regulation of iNOS/NO and TNF- expression.

Original languageEnglish
Article number274025
JournalMediators of Inflammation
Volume2015
DOIs
Publication statusPublished - 2015

All Science Journal Classification (ASJC) codes

  • Immunology
  • Cell Biology

Fingerprint Dive into the research topics of 'Dengue Virus Infection Causes the Activation of Distinct NF- κ B Pathways for Inducible Nitric Oxide Synthase and TNF- Expression in RAW264.7 Cells'. Together they form a unique fingerprint.

Cite this