Depolymerization of lignocellulosic biomass to fuel precursors: Maximizing carbon efficiency by combining hydrolysis with pyrolysis

Jungho Jae, Geoffrey A. Tompsett, Yu Chuan Lin, Torren R. Carlson, Jiacheng Shen, Taiying Zhang, Bin Yang, Charles E. Wyman, W. Curtis Conner, George W. Huber

Research output: Contribution to journalArticlepeer-review

132 Citations (Scopus)

Abstract

In this paper we study the carbon efficiency of combining hydrolysis and pyrolysis processes using maple wood as a feedstock. A two-step hydrolysis of maple wood in batch reactors, that consisted of a thermochemical pretreatment in water followed by enzymatic hydrolysis, achieved an 88.7 wt% yield of glucose and an 85 wt% yield of xylose as liquid streams. The residue obtained was 80 wt% lignin. A combination of TGA and pyroprobe studies was used for the pyrolysis of pure maple wood, hemicellulose-extracted maple wood, and the lignin residue from the hydrolysis of maple wood. Pyrolysis of raw maple wood produced 67 wt% of condensable liquid products (or bio-oils) that were a mixture of compounds including sugars, water, phenolics, aldehydes, and acids. Pyrolysis of hemicellulose-extracted maple wood (the solid product after pretreatment of maple wood) showed similar bio-oil yields and compositions to raw maple wood while pyrolysis of the lignin residue (the final solid product of enzymatic hydrolysis) produced only 44.8 wt% of bio-oil. The bio-oil from the lignin residue is mostly composed of phenolics such as guaiacol and syringol compounds. Catalytic fast pyrolysis (CFP) of maple wood, hemicellulose-extracted maple wood, and lignin residue produced 18.8, 16.6 and 10.1 wt% aromatic products, respectively. Three possible options for the integration of hydrolysis with pyrolysis processes were evaluated based on their material and carbon balances: Option 1 was the pyrolysis/CFP of raw maple wood, option 2 combined hemicellulose extraction by hydrolysis with pyrolysis/CFP of hemicellulose-extracted maple wood, and option 3 combined the two-step hydrolysis of hemicellulose and cellulose sugar extraction with pyrolysis/CFP of the lignin residue. It was found that options 1, 2, and 3 all have similar overall carbon yields for sugars and bio-oils of between 66 and 67%.

Original languageEnglish
Pages (from-to)358-365
Number of pages8
JournalEnergy and Environmental Science
Volume3
Issue number3
DOIs
Publication statusPublished - 2010

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint

Dive into the research topics of 'Depolymerization of lignocellulosic biomass to fuel precursors: Maximizing carbon efficiency by combining hydrolysis with pyrolysis'. Together they form a unique fingerprint.

Cite this