Design and analysis of a unimorph piezoceramic generator with cantilever structure in a low-frequency environment

S. H. Wang, W. S. Yao, W. S. Laio, Mi-Ching Tsai

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Piezoelectric materials have the electromechanical capability of converting mechanical vibration energy into electrical energy and are utilized in sensors, generators, and actuator applications. However, with regard to compact-dimension applications, piezoelectric generators have to overcome some shortcomings, such as high voltage, low current, and relatively low power output. This article presents a design method of which the loading-weight vibration on the piezoelectric material can be transferred into an external force, and, additionally, an equivalent electric circuit method is used to calculate the electrical characteristics of piezoelectric material. Compared to the measurement, in a 4 Hz vibration environment with a 30 g loading mass, which is equivalent to a 0.5 N external force, the piezoelectric plate can generate an electric voltage of 19.8V A 2.7 per cent error rate of the output voltage in the equivalent force conversion is achieved. Finally, in order to demonstrate the accuracy of the theoretical analysis, a prototype hand-shaking piezoelectric generator is proposed, which is used to drive a wireless-switch device (5V driving voltage). Experimental results show that the average electrical power of the handshaking piezoelectric generator is approximately 50 μW, and a 7 per cent stored power error rate is achieved when comparing the measurement and theoretical estimation.

Original languageEnglish
Pages (from-to)11-21
Number of pages11
JournalProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Issue number1
Publication statusPublished - 2011 Apr 18

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Design and analysis of a unimorph piezoceramic generator with cantilever structure in a low-frequency environment'. Together they form a unique fingerprint.

Cite this