Abstract
This paper proposes a 4-degree-of-freedom (DOF) actuator for a fast steer mirror (FSM) compensation system in order to compensate for 4-DOF laser errors. The mathematic system modeling was built to design and predict the performance of the proposed 4-DOF FSM. Finite element analysis was performed by using a commercial software to analyze the characteristics of the electromagnetic structure and mechanical structure for the proposed 4-DOF FSM. This study further verifies the properties of the proposed 4-DOF FSM by using a laboratory-built prototype. The proposed 4-DOF FSM has the travel range of ±5 mrad and ±0.04 mm along X and Y axes with accuracy of 0.025 mrad and 0.0012 mm and the bandwidth of rotational part and translational part are 10 Hz and 39 Hz, respectively.
Original language | English |
---|---|
Article number | 112639 |
Journal | Sensors and Actuators, A: Physical |
Volume | 322 |
DOIs | |
Publication status | Published - 2021 May 1 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering