Design and implementation of frequency-modulated electronic ballast for metal-halide lamps

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

A two-stage, frequency-modulated (FM), high-frequency-driven electronic ballast for metal-halide (MH) lamps is proposed. The presented ballast consists of a power-factor-correction (PFC) converter as the first stage, a half-bridge series-resonant parallel-loaded (HB-SRPL) inverter as the second stage, and a frequency-modulation controller. The advantageous features of the high-frequency-operated ballast are its compact size and reduced weight. With constant-frequency control, the switching frequency of the ballast must be carefully designed within a frequency window that is free from acoustic resonance, and the envelope of the lamp current is large owing to the DC-bus voltage ripple that occurs on the PFC output. However, if the switching frequency of the inverter is operated outside of the stable operation window or if the energy of some eigenfrequency is sufficiently higher, then acoustic resonances will exist. An FM-controlled electronic ballast for MH lamps is proposed. The switching frequency of the HB-SRPL inverter, whose centre frequency is intentionally designed at a frequency at which acoustic resonances occur, is periodically modulated by the voltage ripples of the PFC output. The presented ballast offers a lower envelope of lamp current in order to expand the power spectrum of the lamp and to decrease the energy of the eigenfrequency that supplies the lamp. Owing to its FM operation that allows for an adequately modulated index, no acoustic resonance occurs. The ballast offers cost-effectiveness, a simple control circuit without an external modulation signal, and a low crest factor (<1.45). Design guidelines and experimental results are presented for a 70W MH lamp ballast that utilises the FM control method with universal-line input voltage.

Original languageEnglish
Pages (from-to)702-710
Number of pages9
JournalIEE Proceedings: Electric Power Applications
Volume153
Issue number5
DOIs
Publication statusPublished - 2006 Oct 9

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Design and implementation of frequency-modulated electronic ballast for metal-halide lamps'. Together they form a unique fingerprint.

Cite this