Design of a self-stirring micromixer at low reynolds number flow

T. R. Shih, C. K. Chung, C. H. Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In order to improve the complicated fabrication process and integration of 3D micromixers, we propose a novel planar self-stirring micromixer with high mixing efficiency and low pressure drop. The planar micromixer with vortices agitation for mixing enhancement had been successfully investigated by the Taguchi method, CFD-ACE simulations and experiments. The factor sensitivity test was performed by L9(34) orthogonal array in Taguchi method. Degree of sensitivity ranks as: Gap ratio > Number of mixing units > Baffle width > Chamber ratio. At Re = 20, micromixer shows 93% mixing efficiency in the adaptive design with three mixing units, H/W = 1/8, W m/W = 1 and Wm = 80. The corresponding pressure drop of this adaptive design is only 4600 Pa at Re 20. Much improved mixing is obtained experimentally in this adaptive design at Re 20. The results of the factor sensitivity test can provide useful information for the design of the micromixers with obstacles. Merits of this design are easy fabrication and high integration capability.

Original languageEnglish
Title of host publication3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008
Pages65-68
Number of pages4
DOIs
Publication statusPublished - 2008
Event3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008 - Sanya, China
Duration: 2008 Jan 62008 Jan 9

Publication series

Name3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS

Other

Other3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008
CountryChina
CitySanya
Period08-01-0608-01-09

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Design of a self-stirring micromixer at low reynolds number flow'. Together they form a unique fingerprint.

Cite this