TY - JOUR
T1 - Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes
AU - Tsai, Nan Chyuan
AU - Liou, Jiun Sheng
AU - Lin, Chih Che
AU - Li, Tuan
N1 - Funding Information:
The authors would like to thank National Nano Devices Laboratory (NDL) for equipment access and technical support. This research was partially supported by National Science Council (Taiwan) with Grant NSC 98-2221-E-006-184-MY3 .
PY - 2010/1
Y1 - 2010/1
N2 - For micro-gyroscopes, the angular rate detection components have to oscillate forwards and backwards alternatively. An innovative design of micro-electromagnetic drive module is proposed to make a Π-type thin disc reciprocally and efficiently rotate within a certain of angular interval. Twelve EM (Electromagnetic) poles, with iron cores at the center and wound by electroplated copper wires, enclosing the thin disc are designed to provide the magnetic drive power. Isotropic etching technique is employed to fabricate the high-aspect-ratio trench, housing of the follow-up electroplated copper, so that the contact angle of wire against trench can be increased and the potential defect of cavities and pores within the wire can be prevented. On the other hand, a Π-type thin disc, with a central bearing and a set of auxiliary bushing, is designed to conduct the pitch motion as an angular excitation, in addition to spinning, is exerted on the gyroscope. That is, the angular motion of the disc is two-dimensional: spinning, driven by the EM poles, and tilting, to respond to the exerted angular rate due to Coriolis effect. The efficacy of the micro-magnetic drive module is verified by theoretical analysis and computer simulations by the commercial software, Ansoft Maxewll. In comparison with the conventional planar windings in micro-scale systems, the magnetic drive force is increased by 150%.
AB - For micro-gyroscopes, the angular rate detection components have to oscillate forwards and backwards alternatively. An innovative design of micro-electromagnetic drive module is proposed to make a Π-type thin disc reciprocally and efficiently rotate within a certain of angular interval. Twelve EM (Electromagnetic) poles, with iron cores at the center and wound by electroplated copper wires, enclosing the thin disc are designed to provide the magnetic drive power. Isotropic etching technique is employed to fabricate the high-aspect-ratio trench, housing of the follow-up electroplated copper, so that the contact angle of wire against trench can be increased and the potential defect of cavities and pores within the wire can be prevented. On the other hand, a Π-type thin disc, with a central bearing and a set of auxiliary bushing, is designed to conduct the pitch motion as an angular excitation, in addition to spinning, is exerted on the gyroscope. That is, the angular motion of the disc is two-dimensional: spinning, driven by the EM poles, and tilting, to respond to the exerted angular rate due to Coriolis effect. The efficacy of the micro-magnetic drive module is verified by theoretical analysis and computer simulations by the commercial software, Ansoft Maxewll. In comparison with the conventional planar windings in micro-scale systems, the magnetic drive force is increased by 150%.
UR - http://www.scopus.com/inward/record.url?scp=76449107540&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76449107540&partnerID=8YFLogxK
U2 - 10.1016/j.sna.2009.10.019
DO - 10.1016/j.sna.2009.10.019
M3 - Article
AN - SCOPUS:76449107540
SN - 0924-4247
VL - 157
SP - 68
EP - 76
JO - Sensors and Actuators, A: Physical
JF - Sensors and Actuators, A: Physical
IS - 1
ER -