Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries

Ramesh Subramani, Minh Nhat Pham, Yu Hsing Lin, Chien Te Hsieh, Yuh Lang Lee, Jeng Shiung Jan, Chi Cheng Chiu, Hsisheng Teng

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Major challenges in the development of lithium metal batteries (LMBs) are nonuniform Li deposition and substantial variation in Li volume, resulting in Li dendrite growth and Li consumption. A networked solid-state polymer electrolyte (NSPE) that comprises poly(ethylene oxide-co-propylene oxide) (P(EO-co-PO)) and poly(dimethylsiloxane) diglycidyl ether (PDMSDGE) chains and a lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is developed for resolving the Li deposition challenges. The methyl pendants on P(EO-co-PO) and PDMSDGE chains render the NSPE a low-surface-energy film for complete coverages on the high-energy Li electrode and regulating Li+ transport. The low-surface-energy characteristics induces overspreading of the highly lithiophilic C-F ends of the TFSI anion at the Li electrode–NSPE interface, forming Li−F bonds and facilitating uniform Li deposition. The elastic PDMS chains enable the NSPE to accommodate Li volume changes. Liquid-phase Li||LiFePO4 and Cu||LiFePO4 cells with the NSPE as an artificial interface or a solid-state Li||LiFePO4 cell with the NSPE as solid electrolyte had uniform anodic Li deposition, resulting in long cycle life and high coulombic efficiency. Our study demonstrated that (a) low surface energy to completely cover the Li anode and (b) the presence of interfacial Li − F bonds are two essential requirements for uniform Li deposition in LMBs.

Original languageEnglish
Article number133442
JournalChemical Engineering Journal
Volume431
DOIs
Publication statusPublished - 2022 Mar 1

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries'. Together they form a unique fingerprint.

Cite this