Abstract
In this article, the conceptual design of biomass steam gasification (BSG) processes using raw oil palm (ROP) and torrefied oil palm (TOP) are examined in an Aspen Plus simulator. Through thermodynamic analysis, it is verified that the BSG process with torrefied feedstock can effectively enhance the hydrogen yield. When the heat recovery design is added into the BSG process, the system energetic efficiency (SEE) is significantly improved. Finally, an optimization algorithm with respect to SEE and hydrogen yield is solved, and the optimum operating conditions are validated by simulations.
Original language | English |
---|---|
Pages (from-to) | 94-110 |
Number of pages | 17 |
Journal | Energies |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2015 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering