Detecting Endotracheal Tube and Carina on Portable Supine Chest Radiographs Using One-Stage Detector with a Coarse-to-Fine Attention

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In intensive care units (ICUs), after endotracheal intubation, the position of the endotracheal tube (ETT) should be checked to avoid complications. The malposition can be detected by the distance between the ETT tip and the Carina (ETT–Carina distance). However, it struggles with a limited performance for two major problems, i.e., occlusion by external machine, and the posture and machine of taking chest radiographs. While previous studies addressed these problems, they always suffered from the requirements of manual intervention. Therefore, the purpose of this paper is to locate the ETT tip and the Carina more accurately for detecting the malposition without manual intervention. The proposed architecture is composed of FCOS: Fully Convolutional One-Stage Object Detection, an attention mechanism named Coarse-to-Fine Attention (CTFA), and a segmentation branch. Moreover, a post-process algorithm is adopted to select the final location of the ETT tip and the Carina. Three metrics were used to evaluate the performance of the proposed method. With the dataset provided by National Cheng Kung University Hospital, the accuracy of the malposition detected by the proposed method achieves (Formula presented.) and the ETT–Carina distance errors are less than (Formula presented.) mm.

Original languageEnglish
Article number1913
JournalDiagnostics
Volume12
Issue number8
DOIs
Publication statusPublished - 2022 Aug

All Science Journal Classification (ASJC) codes

  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Detecting Endotracheal Tube and Carina on Portable Supine Chest Radiographs Using One-Stage Detector with a Coarse-to-Fine Attention'. Together they form a unique fingerprint.

Cite this