Determination of Dispersion Relation and Optical Parameters Induced by Exciton-Polariton Effect in Whispering-Gallery Microcavities Using Photoluminescence Spectroscopy

Sheng Chan Wu, Gia Yuan Zhuang, Yia Chung Chang, Hsu Cheng Hsu

Research output: Contribution to journalArticlepeer-review

Abstract

To realize the refractive index dispersion accurately is essential for the design of optical devices. In this paper, we study hexagonal ZnO microrod cavities. We measure angle-resolved photoluminescence and use an iterative method to derive the refractive index dispersion near the band edge. Because of the large exciton binding energy in bulk ZnO, the photogenerated excitons are stable at room temperature. As a result, excitons could significantly affect the refractive index dispersion near the resonance energy. Thus, we construct a modified Lorentz oscillator model to extract the transverse and longitudinal exciton resonance energy and the damping term due to the scattering between LO-phonons and excitons at room temperature. The Rabi splitting energy and zero detuning point obtained by this method are reliable. The dispersion relations of polaritons measured by our angle-resolved photoluminescence agree well with the dispersion relation of polaritons, deduced by using the refractive index dispersion and optical parameters obtained by our theoretical model, thus, lending support to our theoretical model and the extracted parameters.

Original languageEnglish
Pages (from-to)1413-1420
Number of pages8
JournalACS Photonics
Volume8
Issue number5
DOIs
Publication statusPublished - 2021 May 19

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Determination of Dispersion Relation and Optical Parameters Induced by Exciton-Polariton Effect in Whispering-Gallery Microcavities Using Photoluminescence Spectroscopy'. Together they form a unique fingerprint.

Cite this