Determination of optimum gene transfection conditions using the Taguchi method for an electroporation microchip

Sheng Chung Yang, Keng Shiang Huang, Hung Yi Chen, Yu Cheng Lin

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


This study demonstrates the optimization of an electroporation (EP) microchip system for gene transfection using the Taguchi method. The computer-aided engineering simulations show that approximately 80% of the cells are distributed in the middle region of the reaction chamber and are subjected to the applied electric field. A smaller electrode gap, such as 50 μm, gained a larger and more uniform electric field distribution in the middle region. The parameters of the EP microchip system, which can have an influence on the transfecting rate were optimized, resulting in values of 50 μm electrode gap, 20 μg/mL pEGFP-N1 concentration, 6 V applied voltage, and 2-pulse. A larger-the-better Ω transformation was employed for better additivity. The analyzed results of interactions A × C, A × D, and C × D show that there were strong interactions on level 3 of factors A, C, and D among each other. Using the optimized EP microchip system, the great majority of pEGFP-N1 plasmids was successfully transfected into the NIH Swiss mouse embryo fibroblast cell lines (NIH-3T3). The optimized EP parameters helped with improving the EP microchip system and elevating the average transfection rate from 17.2 to 40.36%, and the inaccuracy of the predicted transfection rate of 43.67% was as small as 3.31%.

Original languageEnglish
Pages (from-to)551-557
Number of pages7
JournalSensors and Actuators, B: Chemical
Issue number2
Publication statusPublished - 2008 Jun 16

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry


Dive into the research topics of 'Determination of optimum gene transfection conditions using the Taguchi method for an electroporation microchip'. Together they form a unique fingerprint.

Cite this