Abstract
Accurate Henry's law constants (H) are unavailable for the majority of organic pollutants, especially those having a low volatility. A novel kinetics-based experimental method is introduced to determine H for a wide range of low-H compounds. The method consists of measuring independently the water-to-air transfer coefficient (KL) and the associated air-phase transfer coefficient (kG) of a low-H chemical (solute) in water when KL ≅ kGH prevails according to the two-film theory. The kG for a solute is obtained via a developed gas-dynamic equation that relates kG to the solute molecular weight and the solute-vapor escaping efficiency (β) through a boundary air layer. The value of β is only a function of the in situ air turbulence level, independent of the chemical species. Thus, the required β for solutes can be estimated from the evaporative rates of pure volatile liquids under the same ambient setting. By relating the estimated kG with the measured KL of a low-H solute, the solute H is established. The H values of 45 low-H chemicals, including many complex pesticides, in the range of ∼10−7 to ∼10−3 have thus been determined. The accountability of the method is underscored by the consistency of the measured and credible literature H values for a number of the low-H compounds studied.
Original language | English |
---|---|
Pages (from-to) | 238-244 |
Number of pages | 7 |
Journal | Water Research |
Volume | 120 |
DOIs | |
Publication status | Published - 2017 |
All Science Journal Classification (ASJC) codes
- Ecological Modelling
- Water Science and Technology
- Waste Management and Disposal
- Pollution