Determination of the Henry's law constants of low-volatility compounds via the measured air-phase transfer coefficients

Huan Ping Chao, Jiunn Fwu Lee, Cary T. Chiou

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Accurate Henry's law constants (H) are unavailable for the majority of organic pollutants, especially those having a low volatility. A novel kinetics-based experimental method is introduced to determine H for a wide range of low-H compounds. The method consists of measuring independently the water-to-air transfer coefficient (KL) and the associated air-phase transfer coefficient (kG) of a low-H chemical (solute) in water when KL ≅ kGH prevails according to the two-film theory. The kG for a solute is obtained via a developed gas-dynamic equation that relates kG to the solute molecular weight and the solute-vapor escaping efficiency (β) through a boundary air layer. The value of β is only a function of the in situ air turbulence level, independent of the chemical species. Thus, the required β for solutes can be estimated from the evaporative rates of pure volatile liquids under the same ambient setting. By relating the estimated kG with the measured KL of a low-H solute, the solute H is established. The H values of 45 low-H chemicals, including many complex pesticides, in the range of ∼10−7 to ∼10−3 have thus been determined. The accountability of the method is underscored by the consistency of the measured and credible literature H values for a number of the low-H compounds studied.

Original languageEnglish
Pages (from-to)238-244
Number of pages7
JournalWater Research
Volume120
DOIs
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint Dive into the research topics of 'Determination of the Henry's law constants of low-volatility compounds via the measured air-phase transfer coefficients'. Together they form a unique fingerprint.

Cite this