Development of an improved rapidly exploring random trees algorithm for static obstacle avoidance in autonomous vehicles

S. M. Yang, Y. A. Lin

Research output: Contribution to journalArticlepeer-review

Abstract

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.

Original languageEnglish
Article number2244
JournalSensors
Volume21
Issue number6
DOIs
Publication statusPublished - 2021 Mar 2

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Biochemistry
  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Development of an improved rapidly exploring random trees algorithm for static obstacle avoidance in autonomous vehicles'. Together they form a unique fingerprint.

Cite this