Device-to-device underlaid cellular networks under rician fading channels

Mugen Peng, Yuan Li, Tony Q.S. Quek, Chonggang Wang

Research output: Contribution to journalArticlepeer-review

116 Citations (Scopus)


Using Device-to-device (D2D) communications in a cellular network is an economical and effective approach to increase the transmission data rate and extend the coverage. Nevertheless, the D2D underlaid cellular network is challenging due to the presence of inter-tier and intra-tier interferences. With necessarily lower antenna heights in D2D communication links, the fading channels are likely to contain strong line-of-sight components, which are different from the Rayleigh fading distribution in conventional two-tier heterogeneous networks. In this paper, we derive the success probability, spatial average rate, and area spectral efficiency performances for both cellular users and D2D users by taking into account the different channel propagations that they experience. Specifically, we employ stochastic geometry as an analysis framework to derive closed-form expressions for above performance metrics. Furthermore, to reduce cross-tier interferences and improve system performances, we propose a centralized opportunistic access control scheme as well as a mode selection mechanism. According to the analysis and simulations, we obtain interesting tradeoffs that depend on the effect of the channel propagation parameter, user node density, and the spectrum occupation ratio on the different performance metrics. This work highlights the importance of incorporating the suitable channel propagation model into the system design and analysis to obtain the realistic results and conclusions.

Original languageEnglish
Article number6779679
Pages (from-to)4247-4259
Number of pages13
JournalIEEE Transactions on Wireless Communications
Issue number8
Publication statusPublished - 2014 Aug

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics


Dive into the research topics of 'Device-to-device underlaid cellular networks under rician fading channels'. Together they form a unique fingerprint.

Cite this