Different modulatory mechanisms of renal FXYD12 for Na+ -K+ -ATPase between two closely related medakas upon salinity challenge

Wen Kai Yang, Chao Kai Kang, An Di Hsu, Chia Hao Lin, Tsung Han Lee

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Upon salinity challenge, the Na+-K +-ATPase (NKA) of fish kidney plays a crucial role in maintaining ion and water balance. Moreover, the FXYD protein family was found to be a regulator of NKA. Our preliminary results revealed that fxyd12 was highly expressed in the kidneys of the two closely related euryhaline medaka species (Oryzias dancena and O. latipes) from different natural habitats (brackish water and fresh water). In this study, we investigated the expression and association of renal FXYD12 and NKA α-subunit as well as potential functions of FXYD12 in the two medakas. These findings illustrated and compared the regulatory roles of FXYD12 for NKA in kidneys of the two medakas in response to salinity changes. In this study, at the mRNA and/or protein level, the expression patterns were similar for renal FXYD12 and NKA in the two medakas. However, different patterns of NKA activities and different interaction levels between FXYD12 and NKA were found in the kidneys of these two medakas. The results revealed that different strategies were used in the kidneys of the two medaka species upon salinity challenge. On the other hand, gene knockdown experiments demonstrated that the function of O. dancena FXYD12 allowed maintenance of a high level of NKA activity. The results of the present study indicated that the kidneys of the examined euryhaline medakas originating from brackish water and fresh water exhibited different modulatory mechanisms through which renal FXYD12 enhanced NKA activity to maintain internal homeostasis. Our findings broadened the knowledge of expression and functions of FXYD proteins, the modulators of NKA, in vertebrates.

Original languageEnglish
Pages (from-to)730-745
Number of pages16
JournalInternational Journal of Biological Sciences
Issue number6
Publication statusPublished - 2016 Apr 28

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Developmental Biology
  • Cell Biology


Dive into the research topics of 'Different modulatory mechanisms of renal FXYD12 for Na+ -K+ -ATPase between two closely related medakas upon salinity challenge'. Together they form a unique fingerprint.

Cite this