Differential training benefits and motor unit remodeling in wrist force precision tasks following high and low load blood flow restriction exercises under volume-matched conditions

Yen Ting Lin, Chun Man Wong, Yi Ching Chen, Yueh Chen, Ing Shiou Hwang

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Blood flow restriction (BFR) resistance training has demonstrated efficacy in promoting strength gains beneficial for rehabilitation. Yet, the distinct functional advantages of BFR strength training using high-load and low-load protocols remain unclear. This study explored the behavioral and neurophysiological mechanisms that explain the differing effects after volume-matched high-load and low-load BFR training. Methods: Twenty-eight healthy participants were randomly assigned to the high-load blood flow restriction (BFR-HL, n = 14) and low-load blood flow restriction (BFR-LL, n = 14) groups. They underwent 3 weeks of BFR training for isometric wrist extension at intensities of 25% or 75% of maximal voluntary contraction (MVC) with matched training volume. Pre- and post-tests included MVC and trapezoidal force-tracking tests (0–75%–0% MVC) with multi-channel surface electromyography (EMG) from the extensor digitorum. Results: The BFR-HL group exhibited a greater strength gain than that of the BFR-LL group after training (BFR_HL: 26.96 ± 16.33% vs. BFR_LL: 11.16 ± 15.34%)(p = 0.020). However, only the BFR-LL group showed improvement in force steadiness for tracking performance in the post-test (p = 0.004), indicated by a smaller normalized change in force fluctuations compared to the BFR-HL group (p = 0.048). After training, the BFR-HL group activated motor units (MUs) with higher recruitment thresholds (p < 0.001) and longer inter-spike intervals (p = 0.002), contrary to the BFR-LL group, who activated MUs with lower recruitment thresholds (p < 0.001) and shorter inter-spike intervals (p < 0.001) during force-tracking. The discharge variability (p < 0.003) and common drive index (p < 0.002) of MUs were consistently reduced with training for the two groups. Conclusions: BFR-HL training led to greater strength gains, while BFR-LL training better improved force precision control due to activation of MUs with lower recruitment thresholds and higher discharge rates.

Original languageEnglish
Article number123
JournalJournal of NeuroEngineering and Rehabilitation
Volume21
Issue number1
DOIs
Publication statusPublished - 2024 Dec

All Science Journal Classification (ASJC) codes

  • Rehabilitation
  • Health Informatics

Cite this