TY - JOUR
T1 - Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy
T2 - A meta-analysis
AU - Chuang, Ming Tsung
AU - Liu, Yi Sheng
AU - Tsai, Yi Shan
AU - Chen, Ying Chen
AU - Wang, Chien Kuo
N1 - Publisher Copyright:
© 2016 Chuang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/1/7
Y1 - 2016/1/7
N2 - Purpose: This meta-analysis examined roles of several metabolites in differentiating recurrent tumor from necrosis in patients with brain tumors using MR perfusion and spectroscopy. Methods: Medline, Cochrane, EMBASE, and Google Scholar were searched for studies using perfusion MRI and/or MR spectroscopy published up to March 4, 2015 which differentiated between recurrent tumor vs. necrosis in patients with primary brain tumors or brain metastasis. Only two-armed, prospective or retrospective studies were included. A meta-analysis was performed on the difference in relative cerebral blood volume (rCBV), ratios of choline/creatine (Cho/Cr) and/or choline/N-acetyl aspartate (Cho/NAA) between participants undergoing MRI evaluation. A χ2-based test of homogeneity was performed using Cochran's Q statistic and I2. Results: Of 397 patients in 13 studies who were analyzed, the majority had tumor recurrence. As there was evidence of heterogeneity among 10 of the studies which used rCBV for evaluation (Q statistic = 31.634, I2 = 97.11%, P < 0.0001) a random-effects analysis was applied. The pooled difference in means (2.18, 95%CI = 0.85 to 3.50) indicated that the average rCBV in a contrast-enhancing lesion was significantly higher in tumor recurrence compared with radiation injury (P = 0.001). Based on a fixed-effect model of analysis encompassing the six studies which used Cho/Cr ratios for evaluation (Q statistic = 8.388, I2 = 40.39%, P = 0.137), the pooled difference in means (0.77, 95%CI = 0.57 to 0.98) of the average Cho/Cr ratio was significantly higher in tumor recurrence than in tumor necrosis (P = 0.001). There was significant difference in ratios of Cho to NAA between recurrent tumor and necrosis (1.02, 95%CI = 0.03 to 2.00, P = 0.044). Conclusions: MR spectroscopy and MR perfusion using Cho/NAA and Cho/Cr ratios and rCBV may increase the accuracy of differentiating necrosis from recurrent tumor in patients with primary brain tumors or metastases.
AB - Purpose: This meta-analysis examined roles of several metabolites in differentiating recurrent tumor from necrosis in patients with brain tumors using MR perfusion and spectroscopy. Methods: Medline, Cochrane, EMBASE, and Google Scholar were searched for studies using perfusion MRI and/or MR spectroscopy published up to March 4, 2015 which differentiated between recurrent tumor vs. necrosis in patients with primary brain tumors or brain metastasis. Only two-armed, prospective or retrospective studies were included. A meta-analysis was performed on the difference in relative cerebral blood volume (rCBV), ratios of choline/creatine (Cho/Cr) and/or choline/N-acetyl aspartate (Cho/NAA) between participants undergoing MRI evaluation. A χ2-based test of homogeneity was performed using Cochran's Q statistic and I2. Results: Of 397 patients in 13 studies who were analyzed, the majority had tumor recurrence. As there was evidence of heterogeneity among 10 of the studies which used rCBV for evaluation (Q statistic = 31.634, I2 = 97.11%, P < 0.0001) a random-effects analysis was applied. The pooled difference in means (2.18, 95%CI = 0.85 to 3.50) indicated that the average rCBV in a contrast-enhancing lesion was significantly higher in tumor recurrence compared with radiation injury (P = 0.001). Based on a fixed-effect model of analysis encompassing the six studies which used Cho/Cr ratios for evaluation (Q statistic = 8.388, I2 = 40.39%, P = 0.137), the pooled difference in means (0.77, 95%CI = 0.57 to 0.98) of the average Cho/Cr ratio was significantly higher in tumor recurrence than in tumor necrosis (P = 0.001). There was significant difference in ratios of Cho to NAA between recurrent tumor and necrosis (1.02, 95%CI = 0.03 to 2.00, P = 0.044). Conclusions: MR spectroscopy and MR perfusion using Cho/NAA and Cho/Cr ratios and rCBV may increase the accuracy of differentiating necrosis from recurrent tumor in patients with primary brain tumors or metastases.
UR - http://www.scopus.com/inward/record.url?scp=84954040240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954040240&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0141438
DO - 10.1371/journal.pone.0141438
M3 - Article
C2 - 26741961
AN - SCOPUS:84954040240
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 1
M1 - e0141438
ER -