TY - JOUR
T1 - Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition
AU - Aikawa, Shimpei
AU - Inokuma, Kentaro
AU - Wakai, Satoshi
AU - Sasaki, Kengo
AU - Ogino, Chiaki
AU - Chang, Jo Shu
AU - Hasunuma, Tomohisa
AU - Kondo, Akihiko
N1 - Funding Information:
This work was supported by Core Research for Evolutional Science and Technology (CREST) of Promoting Globalization on Strategic Basic Research Programs of the Japan Science and Technology Agency. The study was also partially supported by a National Cheng Kung University project, as part of a second‑phase 5‑year 50‑billion dollar grant from the Taiwanese government to JSC, a Grant‑in‑Aid for Kurita Water and Environment Foundation to SA (No. 13A021), and JSPS KAKENHI Grant Numbers JP 26117716 and JP16K18836 to SA.
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/2/27
Y1 - 2018/2/27
N2 - Background: The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. Results: To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h-1 from A. platensis, corresponding to 90 g L-1 of glycogen. Conclusions: We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
AB - Background: The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. Results: To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h-1 from A. platensis, corresponding to 90 g L-1 of glycogen. Conclusions: We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
UR - http://www.scopus.com/inward/record.url?scp=85042609516&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85042609516&partnerID=8YFLogxK
U2 - 10.1186/s13068-018-1050-y
DO - 10.1186/s13068-018-1050-y
M3 - Article
AN - SCOPUS:85042609516
SN - 1754-6834
VL - 11
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 50
ER -