Direct ceramic coating of calcium phosphate doped with strontium via reactive growing integration layer method on α-Ti alloy

Chi Huang Huang, Masahiro Yoshimura

Research output: Contribution to journalArticle

Abstract

A strontium (Sr)-doped hydroxyapatite-like coating was deposited on α-Ti alloy via the growing integration layer (GIL) method at various applied voltages. We added 0.03 M strontium hydroxide (Sr(OH)2·8H2O) to a solution containing calcium acetate and sodium dihydrogen phosphate to produce Sr-doped hydroxyapatite (Sr-HA) coatings. The scanning electron microscope (SEM) images of these coatings showed that all various features, such as average pore size, coating thickness, micro-hardness, and roughness, were similar to those of HA. As the voltage increased from 250 to 300 V, the amount of micro cracks decreased, and there were eliminated at 350 V. The SEM images also showed that the Sr-HA coatings were closely integrated with the alloy: without any gaps between the oxide layers and the alloy. In addition, energy-dispersive X-ray spectroscopy verified the Sr integration from the bottom up. X-ray diffraction patterns confirmed Sr-HA formation instead of calcium phosphate, even at the lowest voltage of 250 V. The value of Ecorr increased by 6.6% after raising the voltage from 250 to 350 V. The electrochemical impedance spectroscopy analysis confirmed that the adequate corrosion resistance of Sr-HA coatings, especially at the highest voltage of 350 V. In addition, the GIL treatment increased the layer resistance measured by Rp/Rc. Optimally, the GIL method used the highest voltage of 350 V to produce higher quality of Sr-HA-rich coatings.

Original languageEnglish
Article number10602
JournalScientific reports
Volume10
Issue number1
DOIs
Publication statusPublished - 2020 Dec 1

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Direct ceramic coating of calcium phosphate doped with strontium via reactive growing integration layer method on α-Ti alloy'. Together they form a unique fingerprint.

  • Cite this