TY - JOUR
T1 - Disrupted ectodermal organ morphogenesis in mice with a conditional histone deacetylase 1, 2 deletion in the epidermis
AU - Hughes, Michael W.
AU - Jiang, Ting Xin
AU - Lin, Sung Jan
AU - Leung, Yvonne
AU - Kobielak, Krzysztof
AU - Widelitz, Randall B.
AU - Chuong, Cheng M.
N1 - Funding Information:
This research was supported by the NIH NIAMS through grants AR 42177 (CMC), AR 47364 (CMC, RW), and AR 60306 (CMC). KK and YL are supported by RO3 AR 061028. SJL is supported by a fellowship from NHRI, Taiwan. We thank Dr. E. Olson for the Hdac1loxp and Hdac2loxp mice. Confocal microscopy was performed in the Cell and Tissue Imaging Core of the USC Research Center for Liver Diseases, NIH grant number P30DK048522. Procedures for all animals utilized in this study were approved by the University of Southern California Institutional Animal Care and Use Committee.
PY - 2014/1
Y1 - 2014/1
N2 - Histone deacetylases (HDACs) are present in the epidermal layer of the skin, outer root sheath, and hair matrix. To investigate how histone acetylation affects skin morphogenesis and homeostasis, mice were generated with a K14 promoter-mediated reduction of Hdac1 or Hdac2. The skin of HDAC1 null (K14-Cre Hdac1cKO/cKO) mice exhibited a spectrum of lesions, including irregularly thickened interfollicular epidermis, alopecia, hair follicle dystrophy, claw dystrophy, and abnormal pigmentation. Hairs are sparse, short, and intermittently coiled. The distinct pelage hair types are lost. During the first hair cycle, hairs are lost and replaced by dystrophic hair follicles with dilated infundibulae. The dystrophic hair follicle epithelium is stratified and is positive for K14, involucrin, and TRP63, but negative for keratin 10. Some dystrophic follicles are K15 positive, but mature hair fiber keratins are absent. The digits form extra hyperpigmented claws on the lateral sides. Hyperpigmentation is observed in the interfollicular epithelium, the tail, and the feet. Hdac1 and Hdac2 dual transgenic mice (K14-Cre Hdac1cKO/cKO Hdac2+/cKO) have similar but more obvious abnormalities. These results show that suppression of epidermal HDAC activity leads to improper ectodermal organ morphogenesis and disrupted hair follicle regeneration and homeostasis, as well as indirect effects on pigmentation.
AB - Histone deacetylases (HDACs) are present in the epidermal layer of the skin, outer root sheath, and hair matrix. To investigate how histone acetylation affects skin morphogenesis and homeostasis, mice were generated with a K14 promoter-mediated reduction of Hdac1 or Hdac2. The skin of HDAC1 null (K14-Cre Hdac1cKO/cKO) mice exhibited a spectrum of lesions, including irregularly thickened interfollicular epidermis, alopecia, hair follicle dystrophy, claw dystrophy, and abnormal pigmentation. Hairs are sparse, short, and intermittently coiled. The distinct pelage hair types are lost. During the first hair cycle, hairs are lost and replaced by dystrophic hair follicles with dilated infundibulae. The dystrophic hair follicle epithelium is stratified and is positive for K14, involucrin, and TRP63, but negative for keratin 10. Some dystrophic follicles are K15 positive, but mature hair fiber keratins are absent. The digits form extra hyperpigmented claws on the lateral sides. Hyperpigmentation is observed in the interfollicular epithelium, the tail, and the feet. Hdac1 and Hdac2 dual transgenic mice (K14-Cre Hdac1cKO/cKO Hdac2+/cKO) have similar but more obvious abnormalities. These results show that suppression of epidermal HDAC activity leads to improper ectodermal organ morphogenesis and disrupted hair follicle regeneration and homeostasis, as well as indirect effects on pigmentation.
UR - http://www.scopus.com/inward/record.url?scp=84891014086&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891014086&partnerID=8YFLogxK
U2 - 10.1038/jid.2013.283
DO - 10.1038/jid.2013.283
M3 - Article
AN - SCOPUS:84891014086
SN - 0022-202X
VL - 134
SP - 24
EP - 32
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 1
ER -