TY - JOUR
T1 - Distinctive effects of aerobic and resistance exercise modes on neurocognitive and biochemical changes in individuals with mild cognitive impairment
AU - Tsai, Chia Liang
AU - Pai, Ming Chyi
AU - Ukropec, Jozef
AU - Ukropcová, Barbara
N1 - Funding Information:
The authors deeply appreciate the participants and their family caregivers who gave their precious time to participate in this research and facilitate the work reported here. The Taiwan-Slovak Joint Research Cooperation Study was supported by the Minister of Science and Technology in Taiwan under grant numbers MOST 103-2923-H-006-001-MY3 and MOST 105-2410-H-006-050-MY3, and by the Slovak Academy of Sciences in Slovakia under grant number SAS/NSC JRP 2013/17.
Publisher Copyright:
© 2019 Bentham Science Publishers.
PY - 2019
Y1 - 2019
N2 - Background: Decreased levels of the neuroprotective growth factors, low-grade inflammation, and reduced neurocognitive functions during aging are associated with neurodegenerative diseases, such as Alzheimer’s disease. Physical exercise modifies these disadvantageous phenomena while a sedentary lifestyle promotes them. Purpose: The purposes of the present study included investigating whether both aerobic and resistance exercise produce divergent effects on the neuroprotective growth factors, inflammatory cytokines, and neurocognitive performance, and further exploring whether changes in the levels of these molecular biomarkers are associated with alterations in neurocognitive performance. Methods: Fifty-five older adults with amnestic MCI (aMCI) were recruited and randomly assigned to an aerobic exercise (AE) group, a resistance exercise (RE) group, or a control group. The assessment included neurocognitive measures [e.g., behavior and event-related potential (ERP)] during a task-switching paradigm, as well as circulating neuroprotective growth factors (e.g., BDNF, IGF-1, VEGF, and FGF-2) and inflammatory cytokine (e.g., TNF-α, IL-1β, IL-6, IL-8, and IL-15) levels at baseline and after either a 16-week aerobic or resistance exercise intervention program or a control period. Results: Aerobic and resistance exercise could effectively partially facilitate neurocognitive performance [e.g., accuracy rates (ARs), reaction times during the heterogeneous condition, global switching cost, and ERP P3 amplitude] when the participants performed the task switching paradigm although the ERP P2 components and P3 latency could not be changed. In terms of the circulating molecular biomarkers, the 16-week exercise interventions did not change some parameters (e.g., leptin, VEGF, FGF-2, IL-1β, IL-6, and IL-8). However, the peripheral serum BDNF level was significantly increased, and the levels of insulin, TNF-α, and IL-15 levels were significantly decreased in the AE group, whereas the RE group showed significantly increased IGF-1 levels and decreased IL-15 levels. The relationships between the changes in neurocognitive performance (AR and P3 amplitudes) and the changes in the levels of neurotrophins (BDNF and IGF-1)/inflammatory cytokines (TNF-α) only approached significance. Conclusion: These findings suggested that in older adults with aMCI, not only aerobic but also resistance exercise is effective with regard to increasing neurotrophins, reducing some inflammatory cytokines, and facilitating neurocognitive performance. However, the aerobic and resistance exercise modes likely employed divergent molecular mechanisms on neurocognitive facilitation.
AB - Background: Decreased levels of the neuroprotective growth factors, low-grade inflammation, and reduced neurocognitive functions during aging are associated with neurodegenerative diseases, such as Alzheimer’s disease. Physical exercise modifies these disadvantageous phenomena while a sedentary lifestyle promotes them. Purpose: The purposes of the present study included investigating whether both aerobic and resistance exercise produce divergent effects on the neuroprotective growth factors, inflammatory cytokines, and neurocognitive performance, and further exploring whether changes in the levels of these molecular biomarkers are associated with alterations in neurocognitive performance. Methods: Fifty-five older adults with amnestic MCI (aMCI) were recruited and randomly assigned to an aerobic exercise (AE) group, a resistance exercise (RE) group, or a control group. The assessment included neurocognitive measures [e.g., behavior and event-related potential (ERP)] during a task-switching paradigm, as well as circulating neuroprotective growth factors (e.g., BDNF, IGF-1, VEGF, and FGF-2) and inflammatory cytokine (e.g., TNF-α, IL-1β, IL-6, IL-8, and IL-15) levels at baseline and after either a 16-week aerobic or resistance exercise intervention program or a control period. Results: Aerobic and resistance exercise could effectively partially facilitate neurocognitive performance [e.g., accuracy rates (ARs), reaction times during the heterogeneous condition, global switching cost, and ERP P3 amplitude] when the participants performed the task switching paradigm although the ERP P2 components and P3 latency could not be changed. In terms of the circulating molecular biomarkers, the 16-week exercise interventions did not change some parameters (e.g., leptin, VEGF, FGF-2, IL-1β, IL-6, and IL-8). However, the peripheral serum BDNF level was significantly increased, and the levels of insulin, TNF-α, and IL-15 levels were significantly decreased in the AE group, whereas the RE group showed significantly increased IGF-1 levels and decreased IL-15 levels. The relationships between the changes in neurocognitive performance (AR and P3 amplitudes) and the changes in the levels of neurotrophins (BDNF and IGF-1)/inflammatory cytokines (TNF-α) only approached significance. Conclusion: These findings suggested that in older adults with aMCI, not only aerobic but also resistance exercise is effective with regard to increasing neurotrophins, reducing some inflammatory cytokines, and facilitating neurocognitive performance. However, the aerobic and resistance exercise modes likely employed divergent molecular mechanisms on neurocognitive facilitation.
UR - http://www.scopus.com/inward/record.url?scp=85066415163&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066415163&partnerID=8YFLogxK
U2 - 10.2174/1567205016666190228125429
DO - 10.2174/1567205016666190228125429
M3 - Article
C2 - 30819077
AN - SCOPUS:85066415163
SN - 1567-2050
VL - 16
SP - 316
EP - 332
JO - Current Alzheimer research
JF - Current Alzheimer research
IS - 4
ER -