Abstract
This paper focuses on the problem of disturbance attenuation with fast global finite-time convergence (FTC) for a class of generalized high-order uncertain nonlinear systems. Combining the fast finite-time stabilization technique with a delicate manipulation of sign functions, a new control approach is proposed to attenuate the serious uncertainties substantially, including time-varying control coefficients, nonlinear parameters, and external disturbances, while achieving the performance evaluated in terms of L2-L2p gain. A notable feature of the control strategy is the fast FTC, which greatly shortens the convergent time when the initial state is far away from the origin. A numerical example is provided to demonstrate the effectiveness of the proposed method.
Original language | English |
---|---|
Pages (from-to) | 824-841 |
Number of pages | 18 |
Journal | International Journal of Robust and Nonlinear Control |
Volume | 30 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2020 Jan 25 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- General Chemical Engineering
- Biomedical Engineering
- Aerospace Engineering
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering