Abstract
We prove the upper and lower estimates of the area of an unknown elastic inclusion in a thin plate by one boundary measurement. The plate is made of non-homogeneous linearly elastic material belonging to a general class of anisotropy and the domain of the inclusion is a measurable subset of the plate. The size estimates are expressed in terms of the work exerted by a couple field applied at the boundary and of the induced transversal displacement and its normal derivative taken at the boundary of the plate. The main new mathematical tool is a doubling inequality for solutions to fourth-order elliptic equations whose principal part P(x, D) is the product of two second-order elliptic operators P1(x, D), P2(x, D) such that P1(0, D) = P2(0, D). The proof of the doubling inequality is based on the Carleman method, a sharp three-spheres inequality and a bootstrapping argument.
Original language | English |
---|---|
Article number | 125012 |
Journal | Inverse Problems |
Volume | 29 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2013 Dec |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Signal Processing
- Mathematical Physics
- Computer Science Applications
- Applied Mathematics