TY - JOUR
T1 - Drosophila STAT is required for directly maintaining HP1 localization and heterochromatin stability
AU - Shi, Song
AU - Larson, Kimberly
AU - Guo, Dongdong
AU - Lim, Su Jun
AU - Dutta, Pranabananda
AU - Yan, Shian Jang
AU - Li, Willis X.
N1 - Funding Information:
We thank J. Birchler, S. Elgin, S. Hou, L. Wallrath, M. Zeidler, G. Reuter, the Developmental Hybridoma Bank (Iowa), the Bloomington Drosophila Stock Center for Drosophila strains and reagents and H. Land and D. Bohmann for helpful comments on the manuscript. This study was supported, in part, by grants from the National Institutes of Health (R01GM65774; R01GM077046), an American Cancer Society Research Scholar Grant (RSG-06-196-01-TBE) and a Leukemia & Lymphoma Society Research Scholar Grant (1087-08) to W.X.L.
PY - 2008
Y1 - 2008
N2 - STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers. We have shown previously that overactivation of JAK, which phosphorylates STAT, disrupts heterochromatin formation globally in Drosophila melanogaster. However, it remains unclear how this effect is mediated and whether STAT is involved. Here, we demonstrate that Drosophila STAT (STAT92E) is involved in controlling heterochromatin protein 1 (HP1) distribution and heterochromatin stability. We found, unexpectedly, that loss of STAT92E, had the same effects as overactivation of JAK in disrupting heterochromatin formation and heterochromatic gene silencing, whereas overexpression of STAT92E had the opposite effects. We have further shown that the unphosphorylated or 'transcriptionally inactive' form of STAT92E is localized on heterochromatin in association with HP1, and is required for stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9). However, activation by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement and heterochromatin destabilization. Thus, reducing levels of unphosphorylated STAT92E, either by loss of STAT92E or increased phosphorylation, causes heterochromatin instability. These results suggest that activation of STAT by phosphorylation controls both access to chromatin and activity of the transcription machinery.
AB - STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers. We have shown previously that overactivation of JAK, which phosphorylates STAT, disrupts heterochromatin formation globally in Drosophila melanogaster. However, it remains unclear how this effect is mediated and whether STAT is involved. Here, we demonstrate that Drosophila STAT (STAT92E) is involved in controlling heterochromatin protein 1 (HP1) distribution and heterochromatin stability. We found, unexpectedly, that loss of STAT92E, had the same effects as overactivation of JAK in disrupting heterochromatin formation and heterochromatic gene silencing, whereas overexpression of STAT92E had the opposite effects. We have further shown that the unphosphorylated or 'transcriptionally inactive' form of STAT92E is localized on heterochromatin in association with HP1, and is required for stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9). However, activation by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement and heterochromatin destabilization. Thus, reducing levels of unphosphorylated STAT92E, either by loss of STAT92E or increased phosphorylation, causes heterochromatin instability. These results suggest that activation of STAT by phosphorylation controls both access to chromatin and activity of the transcription machinery.
UR - http://www.scopus.com/inward/record.url?scp=43149084600&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=43149084600&partnerID=8YFLogxK
U2 - 10.1038/ncb1713
DO - 10.1038/ncb1713
M3 - Article
C2 - 18344984
AN - SCOPUS:43149084600
SN - 1465-7392
VL - 10
SP - 489
EP - 496
JO - Nature Cell Biology
JF - Nature Cell Biology
IS - 4
ER -