TY - GEN
T1 - Dual reconstruction with densely connected residual network for single image super-resolution
AU - Hsu, Chih Chung
AU - Lin, Chia Hsiang
PY - 2019/10
Y1 - 2019/10
N2 - Deep learning-based single image super-resolution enables very fast and high-visual-quality reconstruction. Recently, an enhanced super-resolution based on generative adversarial network (ESRGAN) has achieved excellent performance in terms of both qualitative and quantitative quality of the reconstructed high-resolution image. In this paper, we propose to add one more shortcut between two dense-blocks, as well as add shortcut between two convolution layers inside a dense-block. With this simple strategy of adding more shortcuts in the proposed network, it enables a faster learning process as the gradient information can be back-propagated more easily. Based on the improved ESRGAN, the dual reconstruction is proposed to learn different aspects of the super-resolved image for judiciously enhancing the quality of the reconstructed image. In practice, the super-resolution model is pre-trained solely based on pixel distance, followed by fine-tuning the parameters in the model based on adversarial loss and perceptual loss. Finally, we fuse two different models by weighted-summing their parameters to obtain the final super-resolution model. Experimental results demonstrated that the proposed method achieves excellent performance in the real-world image super-resolution challenge. We have also verified that the proposed dual reconstruction does further improve the quality of the reconstructed image in terms of both PSNR and SSIM.
AB - Deep learning-based single image super-resolution enables very fast and high-visual-quality reconstruction. Recently, an enhanced super-resolution based on generative adversarial network (ESRGAN) has achieved excellent performance in terms of both qualitative and quantitative quality of the reconstructed high-resolution image. In this paper, we propose to add one more shortcut between two dense-blocks, as well as add shortcut between two convolution layers inside a dense-block. With this simple strategy of adding more shortcuts in the proposed network, it enables a faster learning process as the gradient information can be back-propagated more easily. Based on the improved ESRGAN, the dual reconstruction is proposed to learn different aspects of the super-resolved image for judiciously enhancing the quality of the reconstructed image. In practice, the super-resolution model is pre-trained solely based on pixel distance, followed by fine-tuning the parameters in the model based on adversarial loss and perceptual loss. Finally, we fuse two different models by weighted-summing their parameters to obtain the final super-resolution model. Experimental results demonstrated that the proposed method achieves excellent performance in the real-world image super-resolution challenge. We have also verified that the proposed dual reconstruction does further improve the quality of the reconstructed image in terms of both PSNR and SSIM.
UR - http://www.scopus.com/inward/record.url?scp=85082451563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082451563&partnerID=8YFLogxK
U2 - 10.1109/ICCVW.2019.00449
DO - 10.1109/ICCVW.2019.00449
M3 - Conference contribution
T3 - Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
SP - 3643
EP - 3650
BT - Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019
Y2 - 27 October 2019 through 28 October 2019
ER -