Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

Woei Shyan Lee, Chi Feng Lin, Tao Hsing Chen, Hong Wei Chen

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000s-1 and temperatures between -150 and 550°C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000s-1 and a deformation temperature of -150°C. A significant thermal softening effect occurs at temperatures between -150 and 25°C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

Original languageEnglish
Pages (from-to)6279-6286
Number of pages8
JournalMaterials Science and Engineering A
Volume528
Issue number19-20
DOIs
Publication statusPublished - 2011 Jul 25

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range'. Together they form a unique fingerprint.

Cite this